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Introduction: Ray Tracing with Grids

Pros

• Very fast parallel construction
• Ordered traversal, early exit
• Stackless traversal

Cons

• Empty space skipping: Teapot in the Stadium
• Cannot minimize both intersections and traversal steps

3



Introduction: Uniform Grid

Redundant
intersections Empty space︷ ︸︸ ︷ ︷ ︸︸ ︷
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Introduction: Uniform Grid

Increasing resolution

• Fewer intersections
• More traversal steps
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Introduction: Our solution

Idea: Remove regularity

• Start with a dense subdivision
• Optimize cell shape to minimize traversal cost
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Introduction: Our solution

Uniform Grid: Low Resolution

0
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Traversal steps + Intersections
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Uniform Grid: Medium Resolution
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Introduction: Our solution

Irregular Grid: Low Resolution
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Introduction: Our solution

Irregular Grid: Medium Resolution
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Introduction: Our solution

Irregular Grid: High Resolution
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Irregular Grids



Data Structure
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Construction (Part I)

Initialization

• Initial grid
• Two-level construction:

1. A coarse uniform grid
2. An octree in each of the grid cells

• Adaptive: More effort where the geometry is complex
• Dense: Up to 215 resolution in each second-level cell
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Construction (Part I)

Initialization
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Construction (Part I)

Initialization

• User-defined λ1 controls top-level resolution
• With scene volume V and number of objects N [Cle+83]:

R{x,y,z} = d{x,y,z}
3

√
λ1N
V

• Tries to make cells cubic
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Construction (Part I)

Initialization
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Construction (Part I)

Initialization

• Octree depth computed independently in each cell
• Same formula, but: λ2, local number of objects & volume
• Clamp resolution to a power of two:

D = ⌈log2(max(Rx,Ry,Rz))⌉

• Compact: only log2(log2(Rmax)) bits needed
• 4 bits = max. resolution of 215 × 215 × 215
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Construction (Part I)

Initialization

3 2 0

1 2 1
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Construction (Part I)

Initialization
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Construction (Part I): Virtual Grid

Property
Cells are aligned on a virtual grid of resolution Rx,y,z 2D
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Construction (Part I): Voxel Map

Voxel map as a two level grid
Memory efficient/Fast lookup
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Interlude: Traversal

Traversal

• The data structure is not optimal
• But it can already be used for traversal

Ideas

• Maintain position on the virtual grid
• Recompute increment along the ray at each step
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Interlude: Traversal

1. Locate ray origin
2. Loop

2.1 Intersect primitives
2.2 Exit if hit is within cell
2.3 Locate exit point
2.4 Move to next cell
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Contruction (Part II)

Traversal Performance

• Poor empty space skipping =⇒ memory latency
• Redundant intersections =⇒ instr./memory latency

Cell Merging and Expansion

• Local (greedy) optimizations
• Examine cells and their neighborhoods
• Keep optimizations simple and parallelizable
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Contruction (Part II): Optimization Passes

Cell Merging

Initial Grid
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Contruction (Part II): Cell Merging

Cell Merging

• Merge each cell with its neighbor if the SAH decreases:

|R(A)| SA(A) + |R(B)| SA(B) ≥ |R(A ∪ B)| SA(A ∪ B)− Ct

• For empty and non-empty cells
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Contruction (Part II): Cell Merging

Limitations

• Only consider the union of 2 aligned cells
• Union must be a box
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Contruction (Part II): Cell Merging

Stopping criterion

• Keep merging until:

Nafter ≥ αNbefore

• Nafter/Nbefore: number of cells after/before merging
• α = 0.995
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Contruction (Part II): Optimization Passes

Cell Merging
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Contruction (Part II): Cell Expansion

Cell Expansion

• Expand the exit boundaries of the cells
• Must maintain correctness of traversal:

R(B) ⊂ R(A)

16



Contruction (Part II): Cell Expansion

Cell Expansion

• Expand the exit boundaries of the cells
• Must maintain correctness of traversal:

R(A) ̸⊂ R(B)
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Contruction (Part II): Cell Expansion

Limitations

• Must examine every neighbor on the box face
• Binary decision, no partial expansion
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Contruction (Part II): Cell Expansion

Stopping criterion

• Fixed number of expansion passes:
• 3 for static scenes,
• 1 for dynamic scenes.

16



Contruction (Part II): Impact on Traversal

1. Locate ray origin
2. Loop

2.1 Intersect primitives
2.2 Exit if hit is within cell
2.3 Locate exit point
2.4 Move to next cell
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Results: Source Code

GPU implementation

• https://github.com/madmann91/hagrid
• Parallel construction & traversal
• CUDA implementation
• MIT license

18

https://github.com/madmann91/hagrid


Results: Static Scenes

Parameters

• (λ1, λ2) = (0.12, 2.4) for every scene
• Memory footprint ≈ SBVH [SFD09]
• Different viewpoints
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Results: Static Scenes

Scene #Tris

Sponza 262K

Conference 283K

Hairball 2.9M

Crown 3.5M

San Miguel 7.9M

Build
times (ms)

26

22

893

203

492

Primary (MRays/s)
SBVH Ours

409 653 +60%
265 473 +78%

583 597 +2%
523 526 +1%

100 148 +48%
79 93 +18%

232 296 +28%
181 191 +6%

227 291 +28%
157 180 +15%

AO (MRays/s)
SBVH Ours

270 386 +43%
187 234 +25%

303 332 +10%
326 338 +4%

53 69 +30%
63 61 -3%

108 120 +11%
112 125 +12%

119 119 +0%
125 115 -8%

Random (MRays/s)
SBVH Ours

166 274 +65%

295 312 +6%

19 26 +37%

221 238 +8%

119 160 +34%
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Results: Build Times vs. Traversal Performance
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Varying parameters for Crown

• No local optimum ̸= two-level grid
• Increasing density =⇒ increasing performance
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Results: Construction Steps Performance

Initialization

Cell Merging

Cell Expansion

38.44%

48%

13.46%

Time spent during construction

• Average over all static scenes
• Dominated by initialization & merging
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Results: Dynamic Scenes

Methodology

• Comparison with two-level grids [KBS11]
• Fixed time budget
• Two-level grids: choose optimal resolution
• Irregular grid:

• Fixed ratio: λ1 : λ2 = 1 : 8.
• Range: λ1 ∈ [0.01, 0.3], λ2 ∈ [0.08, 2.4]
• Start at minimum, increase until Tbuild = 0.5 Tbudget
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Results: Dynamic Scenes

1spp 8spp1spp 8spp

λ1, λ2

AO spp

10FPS (100ms)
2L Grid Ours
0.2, 2.0 0.3, 2.4
2 20

20FPS (50ms)
2L Grid Ours
0.2, 2.0 0.3, 2.4
1 8

30FPS (33ms)
2L Grid Ours
0.2, 2.0 0.3, 2.4
0 3
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Results: Dynamic Scenes

3spp

13spp

3spp

13spp

λ1, λ2

AO spp

10FPS (100ms)
2L Grid Ours
0.2, 2.0 0.3, 2.4
21 57

20FPS (50ms)
2L Grid Ours
0.2, 2.0 0.3, 2.4
8 24

30FPS (33ms)
2L Grid Ours
0.2, 2.0 0.3, 2.4
3 13
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Results: Dynamic Scenes

8spp

1spp

8spp

1spp

λ1, λ2
AO spp

10FPS (100ms)
2L Grid Ours
0.03, 0.6 0.3, 2.4

1 8

20FPS (50ms)
2L Grid Ours
0.03, 0.6 0.02, 0.16

0 1

30FPS (33ms)
2L Grid Ours
0.03, 0.6 0.01, 0.08

0 0
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Results: Conclusion

Irregular grid properties

• Ordered, stackless traversal
• Same construction/traversal algorithm for:

• Static scenes
• Dynamic scenes

• Performance similar/superior to state-of-the-art

Future directions

• Exploring initial subdivision schemes
• Different voxel map structure
• More aggressive optimizations
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Questions?
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Backup: Related Work

Macro regions Irregular grid
(uniform initialization)

Macro Regions [Dev89]

• Limited to empty space
• Based on uniform grids
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Backup: Aggressive Optimizations

Partial expansion

• Expand cells partially over their neighbors

• Test primitives inside neighbor for intersection

• Implemented in GitHub version

• Additional +10-20% over merge + basic expansion
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