
GPU Ray-tracing using Irregular Grids

Arsène Pérard-Gayot, Javor Kalojanov, Philipp Slusallek
April 23, 2017

1

Introduction

Ray Tracing with Grids

Challenges

Irregular Grids

Construction (Part I)

Traversal

Construction (Part II)

Results

2

Introduction

Introduction: Ray Tracing with Grids

Pros

• Very fast parallel construction
• Ordered traversal, early exit
• Stackless traversal

Cons

• Empty space skipping: Teapot in the Stadium
• Cannot minimize both intersections and traversal steps

3

Introduction: Uniform Grid

Redundant
intersections Empty space︷ ︸︸ ︷ ︷ ︸︸ ︷

4

Introduction: Uniform Grid

Redundant
intersections Empty space︷ ︸︸ ︷ ︷ ︸︸ ︷

4

Introduction: Uniform Grid

Redundant
intersections Empty space︷ ︸︸ ︷ ︷ ︸︸ ︷

4

Introduction: Uniform Grid

Redundant
intersections Empty space︷ ︸︸ ︷ ︷ ︸︸ ︷

4

Introduction: Uniform Grid

Redundant
intersections Empty space︷ ︸︸ ︷ ︷ ︸︸ ︷

4

Introduction: Uniform Grid

Redundant
intersections Empty space︷ ︸︸ ︷ ︷ ︸︸ ︷

4

Introduction: Uniform Grid

Redundant
intersections Empty space︷ ︸︸ ︷ ︷ ︸︸ ︷

4

Introduction: Uniform Grid

Redundant
intersections Empty space︷ ︸︸ ︷ ︷ ︸︸ ︷

4

Introduction: Uniform Grid

Redundant
intersections Empty space︷ ︸︸ ︷ ︷ ︸︸ ︷

4

Introduction: Uniform Grid

Redundant
intersections Empty space︷ ︸︸ ︷ ︷ ︸︸ ︷

4

Introduction: Uniform Grid

Increasing resolution

• Fewer intersections
• More traversal steps

4

Introduction: Our solution

Idea: Remove regularity

• Start with a dense subdivision
• Optimize cell shape to minimize traversal cost

5

Introduction: Our solution

Uniform Grid: Low Resolution

0

200

Traversal steps + Intersections
5

Introduction: Our solution

Uniform Grid: Medium Resolution

0

200

Traversal steps + Intersections
5

Introduction: Our solution

Irregular Grid: Low Resolution

0

200

Traversal steps + Intersections
5

Introduction: Our solution

Irregular Grid: Medium Resolution

0

200

Traversal steps + Intersections
5

Introduction: Our solution

Irregular Grid: High Resolution

0

200

Traversal steps + Intersections
5

Irregular Grids

Data Structure

Irregular Grid

=

3 3
3 3
1
1
1
1
2 2
22

4
4

7
75

59
8

Voxel Map

+

1 2 3 4 5 7 8 9

Cells

Primitive
References

6

Construction (Part I)

Initialization

• Initial grid
• Two-level construction:

1. A coarse uniform grid
2. An octree in each of the grid cells

• Adaptive: More effort where the geometry is complex
• Dense: Up to 215 resolution in each second-level cell

7

Construction (Part I)

Initialization

7

Construction (Part I)

Initialization

• User-defined λ1 controls top-level resolution
• With scene volume V and number of objects N [Cle+83]:

R{x,y,z} = d{x,y,z}
3

√
λ1N
V

• Tries to make cells cubic

7

Construction (Part I)

Initialization

7

Construction (Part I)

Initialization

• Octree depth computed independently in each cell
• Same formula, but: λ2, local number of objects & volume
• Clamp resolution to a power of two:

D = ⌈log2(max(Rx,Ry,Rz))⌉

• Compact: only log2(log2(Rmax)) bits needed
• 4 bits = max. resolution of 215 × 215 × 215

7

Construction (Part I)

Initialization

3 2 0

1 2 1

7

Construction (Part I)

Initialization

7

Construction (Part I): Virtual Grid

Property
Cells are aligned on a virtual grid of resolution Rx,y,z 2D

8

Construction (Part I): Voxel Map

Voxel map as a two level grid
Memory efficient/Fast lookup

9

Interlude: Traversal

Traversal

• The data structure is not optimal
• But it can already be used for traversal

Ideas

• Maintain position on the virtual grid
• Recompute increment along the ray at each step

10

Interlude: Traversal

1. Locate ray origin
2. Loop

2.1 Intersect primitives
2.2 Exit if hit is within cell
2.3 Locate exit point
2.4 Move to next cell

11

Interlude: Traversal

1. Locate ray origin
2. Loop

2.1 Intersect primitives
2.2 Exit if hit is within cell
2.3 Locate exit point
2.4 Move to next cell

11

Interlude: Traversal

1. Locate ray origin
2. Loop

2.1 Intersect primitives
2.2 Exit if hit is within cell
2.3 Locate exit point
2.4 Move to next cell

11

Interlude: Traversal

1. Locate ray origin
2. Loop

2.1 Intersect primitives
2.2 Exit if hit is within cell
2.3 Locate exit point
2.4 Move to next cell

11

Interlude: Traversal

1. Locate ray origin
2. Loop

2.1 Intersect primitives
2.2 Exit if hit is within cell
2.3 Locate exit point
2.4 Move to next cell

11

Interlude: Traversal

1. Locate ray origin
2. Loop

2.1 Intersect primitives
2.2 Exit if hit is within cell
2.3 Locate exit point
2.4 Move to next cell

11

Interlude: Traversal

1. Locate ray origin
2. Loop

2.1 Intersect primitives
2.2 Exit if hit is within cell
2.3 Locate exit point
2.4 Move to next cell

11

Interlude: Traversal

1. Locate ray origin
2. Loop

2.1 Intersect primitives
2.2 Exit if hit is within cell
2.3 Locate exit point
2.4 Move to next cell

11

Interlude: Traversal

1. Locate ray origin
2. Loop

2.1 Intersect primitives
2.2 Exit if hit is within cell
2.3 Locate exit point
2.4 Move to next cell

11

Interlude: Traversal

1. Locate ray origin
2. Loop

2.1 Intersect primitives
2.2 Exit if hit is within cell
2.3 Locate exit point
2.4 Move to next cell

11

Interlude: Traversal

1. Locate ray origin
2. Loop

2.1 Intersect primitives
2.2 Exit if hit is within cell
2.3 Locate exit point
2.4 Move to next cell

11

Interlude: Traversal

1. Locate ray origin
2. Loop

2.1 Intersect primitives
2.2 Exit if hit is within cell
2.3 Locate exit point
2.4 Move to next cell

11

Interlude: Traversal

1. Locate ray origin
2. Loop

2.1 Intersect primitives
2.2 Exit if hit is within cell
2.3 Locate exit point
2.4 Move to next cell

11

Interlude: Traversal

1. Locate ray origin
2. Loop

2.1 Intersect primitives
2.2 Exit if hit is within cell
2.3 Locate exit point
2.4 Move to next cell

11

Interlude: Traversal

1. Locate ray origin
2. Loop

2.1 Intersect primitives
2.2 Exit if hit is within cell
2.3 Locate exit point
2.4 Move to next cell

11

Interlude: Traversal

1. Locate ray origin
2. Loop

2.1 Intersect primitives
2.2 Exit if hit is within cell
2.3 Locate exit point
2.4 Move to next cell

11

Interlude: Traversal

1. Locate ray origin
2. Loop

2.1 Intersect primitives
2.2 Exit if hit is within cell
2.3 Locate exit point
2.4 Move to next cell

11

Interlude: Traversal

1. Locate ray origin
2. Loop

2.1 Intersect primitives
2.2 Exit if hit is within cell
2.3 Locate exit point
2.4 Move to next cell

11

Contruction (Part II)

Traversal Performance

• Poor empty space skipping =⇒ memory latency
• Redundant intersections =⇒ instr./memory latency

Cell Merging and Expansion

• Local (greedy) optimizations
• Examine cells and their neighborhoods
• Keep optimizations simple and parallelizable

12

Contruction (Part II): Optimization Passes

Cell Merging

Initial Grid

x y z

...

Repeat

Cell Expansion

x y z

...

Repeat

...

13

Contruction (Part II): Optimization Passes

Cell Merging

Initial Grid

x y z

...

Repeat

Cell Expansion

x y z

...

Repeat

...

13

Contruction (Part II): Optimization Passes

Cell Merging

Initial Grid

x y z

...

Repeat

Cell Expansion

x y z

...

Repeat

...

13

Contruction (Part II): Cell Merging

Cell Merging

• Merge each cell with its neighbor if the SAH decreases:

|R(A)| SA(A) + |R(B)| SA(B) ≥ |R(A ∪ B)| SA(A ∪ B)− Ct

• For empty and non-empty cells

14

Contruction (Part II): Cell Merging

Limitations

• Only consider the union of 2 aligned cells
• Union must be a box

14

Contruction (Part II): Cell Merging

Stopping criterion

• Keep merging until:

Nafter ≥ αNbefore

• Nafter/Nbefore: number of cells after/before merging
• α = 0.995

14

Contruction (Part II): Optimization Passes

Cell Merging

Initial Grid

x y z

...

Repeat

Cell Expansion

x y z

...

Repeat

...

15

Contruction (Part II): Optimization Passes

Cell Merging

Initial Grid

x y z

...

Repeat

Cell Expansion

x y z

...

Repeat

...

15

Contruction (Part II): Cell Expansion

Cell Expansion

• Expand the exit boundaries of the cells
• Must maintain correctness of traversal:

R(B) ⊂ R(A)

16

Contruction (Part II): Cell Expansion

Cell Expansion

• Expand the exit boundaries of the cells
• Must maintain correctness of traversal:

R(A) ̸⊂ R(B)

16

Contruction (Part II): Cell Expansion

Limitations

• Must examine every neighbor on the box face
• Binary decision, no partial expansion

16

Contruction (Part II): Cell Expansion

Stopping criterion

• Fixed number of expansion passes:
• 3 for static scenes,
• 1 for dynamic scenes.

16

Contruction (Part II): Impact on Traversal

1. Locate ray origin
2. Loop

2.1 Intersect primitives
2.2 Exit if hit is within cell
2.3 Locate exit point
2.4 Move to next cell

17

Contruction (Part II): Impact on Traversal

1. Locate ray origin
2. Loop

2.1 Intersect primitives
2.2 Exit if hit is within cell
2.3 Locate exit point
2.4 Move to next cell

17

Contruction (Part II): Impact on Traversal

1. Locate ray origin
2. Loop

2.1 Intersect primitives
2.2 Exit if hit is within cell
2.3 Locate exit point
2.4 Move to next cell

17

Contruction (Part II): Impact on Traversal

1. Locate ray origin
2. Loop

2.1 Intersect primitives
2.2 Exit if hit is within cell
2.3 Locate exit point
2.4 Move to next cell

17

Contruction (Part II): Impact on Traversal

1. Locate ray origin
2. Loop

2.1 Intersect primitives
2.2 Exit if hit is within cell
2.3 Locate exit point
2.4 Move to next cell

17

Contruction (Part II): Impact on Traversal

1. Locate ray origin
2. Loop

2.1 Intersect primitives
2.2 Exit if hit is within cell
2.3 Locate exit point
2.4 Move to next cell

17

Contruction (Part II): Impact on Traversal

1. Locate ray origin
2. Loop

2.1 Intersect primitives
2.2 Exit if hit is within cell
2.3 Locate exit point
2.4 Move to next cell

17

Contruction (Part II): Impact on Traversal

1. Locate ray origin
2. Loop

2.1 Intersect primitives
2.2 Exit if hit is within cell
2.3 Locate exit point
2.4 Move to next cell

17

Contruction (Part II): Impact on Traversal

1. Locate ray origin
2. Loop

2.1 Intersect primitives
2.2 Exit if hit is within cell
2.3 Locate exit point
2.4 Move to next cell

17

Contruction (Part II): Impact on Traversal

1. Locate ray origin
2. Loop

2.1 Intersect primitives
2.2 Exit if hit is within cell
2.3 Locate exit point
2.4 Move to next cell

17

Contruction (Part II): Impact on Traversal

1. Locate ray origin
2. Loop

2.1 Intersect primitives
2.2 Exit if hit is within cell
2.3 Locate exit point
2.4 Move to next cell

17

Contruction (Part II): Impact on Traversal

1. Locate ray origin
2. Loop

2.1 Intersect primitives
2.2 Exit if hit is within cell
2.3 Locate exit point
2.4 Move to next cell

17

Contruction (Part II): Impact on Traversal

1. Locate ray origin
2. Loop

2.1 Intersect primitives
2.2 Exit if hit is within cell
2.3 Locate exit point
2.4 Move to next cell

17

Contruction (Part II): Impact on Traversal

1. Locate ray origin
2. Loop

2.1 Intersect primitives
2.2 Exit if hit is within cell
2.3 Locate exit point
2.4 Move to next cell

17

Contruction (Part II): Impact on Traversal

1. Locate ray origin
2. Loop

2.1 Intersect primitives
2.2 Exit if hit is within cell
2.3 Locate exit point
2.4 Move to next cell

17

Results

Results: Source Code

GPU implementation

• https://github.com/madmann91/hagrid
• Parallel construction & traversal
• CUDA implementation
• MIT license

18

https://github.com/madmann91/hagrid

Results: Static Scenes

Parameters

• (λ1, λ2) = (0.12, 2.4) for every scene
• Memory footprint ≈ SBVH [SFD09]
• Different viewpoints

19

Results: Static Scenes

Scene #Tris

Sponza 262K

Conference 283K

Hairball 2.9M

Crown 3.5M

San Miguel 7.9M

Build
times (ms)

26

22

893

203

492

Primary (MRays/s)
SBVH Ours

409 653 +60%
265 473 +78%

583 597 +2%
523 526 +1%

100 148 +48%
79 93 +18%

232 296 +28%
181 191 +6%

227 291 +28%
157 180 +15%

AO (MRays/s)
SBVH Ours

270 386 +43%
187 234 +25%

303 332 +10%
326 338 +4%

53 69 +30%
63 61 -3%

108 120 +11%
112 125 +12%

119 119 +0%
125 115 -8%

Random (MRays/s)
SBVH Ours

166 274 +65%

295 312 +6%

19 26 +37%

221 238 +8%

119 160 +34%

19

Results: Build Times vs. Traversal Performance

0.5 1 1.5 2 2.5

0.5

1

1.5

2

2.5

λ1

λ
2

0

50

100

150

200

250

300

0.5 1 1.5 2 2.5

0.5

1

1.5

2

2.5

λ1

λ
2

2

4

6

8

10

Build Times (ms) Traversal Times (ms)
Lower = Better

Varying parameters for Crown

• No local optimum ̸= two-level grid
• Increasing density =⇒ increasing performance

20

Results: Construction Steps Performance

Initialization

Cell Merging

Cell Expansion

38.44%

48%

13.46%

Time spent during construction

• Average over all static scenes
• Dominated by initialization & merging

21

Results: Dynamic Scenes

Methodology

• Comparison with two-level grids [KBS11]
• Fixed time budget
• Two-level grids: choose optimal resolution
• Irregular grid:

• Fixed ratio: λ1 : λ2 = 1 : 8.
• Range: λ1 ∈ [0.01, 0.3], λ2 ∈ [0.08, 2.4]
• Start at minimum, increase until Tbuild = 0.5 Tbudget

22

Results: Dynamic Scenes

1spp 8spp1spp 8spp

λ1, λ2

AO spp

10FPS (100ms)
2L Grid Ours
0.2, 2.0 0.3, 2.4
2 20

20FPS (50ms)
2L Grid Ours
0.2, 2.0 0.3, 2.4
1 8

30FPS (33ms)
2L Grid Ours
0.2, 2.0 0.3, 2.4
0 3

22

Results: Dynamic Scenes

3spp

13spp

3spp

13spp

λ1, λ2

AO spp

10FPS (100ms)
2L Grid Ours
0.2, 2.0 0.3, 2.4
21 57

20FPS (50ms)
2L Grid Ours
0.2, 2.0 0.3, 2.4
8 24

30FPS (33ms)
2L Grid Ours
0.2, 2.0 0.3, 2.4
3 13

22

Results: Dynamic Scenes

8spp

1spp

8spp

1spp

λ1, λ2
AO spp

10FPS (100ms)
2L Grid Ours
0.03, 0.6 0.3, 2.4

1 8

20FPS (50ms)
2L Grid Ours
0.03, 0.6 0.02, 0.16

0 1

30FPS (33ms)
2L Grid Ours
0.03, 0.6 0.01, 0.08

0 0

22

Results: Conclusion

Irregular grid properties

• Ordered, stackless traversal
• Same construction/traversal algorithm for:

• Static scenes
• Dynamic scenes

• Performance similar/superior to state-of-the-art

Future directions

• Exploring initial subdivision schemes
• Different voxel map structure
• More aggressive optimizations

23

Questions?

24

Backup: Related Work

Macro regions Irregular grid
(uniform initialization)

Macro Regions [Dev89]

• Limited to empty space
• Based on uniform grids

25

Backup: Aggressive Optimizations

Partial expansion

• Expand cells partially over their neighbors

• Test primitives inside neighbor for intersection

• Implemented in GitHub version

• Additional +10-20% over merge + basic expansion

26

References

J. G. Cleary et al. “Design and analysis of a parallel ray tracing computer”. In: Graphics Interface ’83.
1983, pp. 33–38.

Olivier Devillers. “The Macro-Regions: An Efficient Space Subdivision Structure for Ray Tracing”. In: EG
1989-Technical Papers. Eurographics Association, 1989.

Javor Kalojanov, Markus Billeter, and Philipp Slusallek. “Two-Level Grids for Ray Tracing on GPUs”. In: EG
2011 - Full Papers. Ed. by Oliver Deussen Min Chen. Llandudno, UK: Eurographics Association, 2011,
pp. 307–314.

Martin Stich, Heiko Friedrich, and Andreas Dietrich. “Spatial splits in bounding volume hierarchies”. In:
In Proc. of High-Performance Graphics. 2009, pp. 7–13.

27

	Introduction
	Ray Tracing with Grids
	Challenges

	Irregular Grids
	Construction (Part I)
	Traversal
	Construction (Part II)

	Results

