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Abstract

In their paper [2012], Kalojanov et al. introduce a theoretical
model for shape decomposition into microtiles - building blocks de-
rived by a set of correspondences that define an equivalence relation
on the surface points of a given model. The authors also showed
that for a specific correspondence functions (rigid r-neighborhood
matching) the set of microtiles characterizes all shapes r-similar
to a given exemplar. Here, we address the problem of comput-
ing a microtile decomposition and show how to efficiently detect
r-symmetric of points on triangle meshes. We first demonstrate that
a microtile decomposition w.r.t. rigid r-symmetry is computable.
Afterwards, we introduce an efficient method for computing mi-
crotiles, which permits such involved analysis to be used in variety
of geometry processing applications.

Keywords: geometric modeling, symmetry detection, inverse pro-
cedural modeling, shape understanding

1 Introduction

Partial symmetry detection and its uses in the field of Computer
Graphics has been studied extensively in the recent years, as sur-
veyed by Mitra et al. [2012]. The advances in this area leave the
impression that symmetry detection, and in particular detection of
rigid partial symmetries is a well understood and broadly covered
problem [Mitra et al. 2006; Bokeloh et al. 2009; Lipman et al.
2010]. However, none of the proposed techniques is widely ac-
cepted to be robust and efficient enough to warrant its integration
into existing geometric modeling software. Furthermore, the ma-
jority of the recent papers on this topic are focused on discovering
a subset of the partial correspondences of an input model (or mod-
els), which suffices to allow further analysis of the data. This makes
it highly unlikely that these symmetry detection algorithms can be
used to efficiently compute a microtile decomposition in the sense
discussed by Kalojanov et al. [2012], where all point-wise equiv-
alences must be detected in order to obtain the required decompo-
sition. It might be possible to use some of the related techniques
for partial symmetry detection to perform “brute force” search for
possible correspondences. However, the amount of the potential
and actual partial matches even for apparently simple models is so
high, that the resulting running times of such implementation make
the microtile analysis impractical.

In this document, we present two algorithms for microtile decom-
position and r-symmetry detection. First, we derive a implementa-
tion using the work by Bokeloh et al. [2010] as a starting point and
use it to verify the theoretical concept from Kalojanov et al. [2012]
and the proof of main theorem in their paper. The first part of the
document is briefly discussed by Kalojanov et al. [2012]. We then
go on and derive an efficient and practical algorithm that is faster by
two orders of magnitude compared to the first attempt, and the most
substantial parts of it can be efficiently implemented using parallel
architectures such as graphics cards. We are able to achieve decom-
position times under a minute for meshes of non-trivial complexity,
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Figure 1: A graph representation of an example set of partial
mappings. The nodes are (colored) points on the surface and the
edges are mappings. As illustrated, all connected components of
the graph have to be cliques by definition.

detecting hundreds of thousands of partial correspondences on a
commodity PC.

2 Related Work

The algorithms for symmetry detection we discuss are closely re-
lated to the works of Bokeloh et al. [2009; 2010]. There, the authors
identify and match line features to detect similar or corresponding
regions on the surface of the input model. Bokeloh et al. [2010] de-
tect matching points that lie on pairs of r-symmetric cuts through
the model. To decompose a shape into microtiles one need to com-
pute all such cuts. This implies that the matching algorithms used
by Bokeloh et al. can be applied for microtiles, but are in general in-
efficient, because of the larger number of candidate transformations
that need to be evaluated.

Lipman et al. [2010] propose a symmetry-aware distance metric and
evaluation method based on spectral clustering. A common aspect
of their method and our work is the grouping of surface points into
equivalence classes, which they call orbits. Lipman et al. assume
that the closer two points are located spatially, the more likely it is
for them to have the same correspondences and therefore combine
their similarity measure with diffusion. This makes their method
robust to data with noise and deformations present in scanned mod-
els. We instead focus on clean surface models in order to compute
the exact boundaries of each symmetric region, which is necessary
for the applications like triangle mesh compression and 3D manu-
facturing, discussed in several related works by Kalojanov et al.
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3 Naı̈ve Microtile Detection

We now describe an algorithm that computes the microtile decom-
position of a manifold triangle mesh in polynomial time. This
method is used by Kalojanov et al. in [2012] as a first attempt at
computing a complete microtile decomposition w.r.t. r-Symmetry.
We start with the abstract algorithm and then discuss its correct-
ness and a concrete prototype implementation. Following Mitra et
al. [2012], we proceed in three stages: feature extraction, aggre-
gation and extraction.

Feature Selection: We cannot test infinitely many transforma-
tions as they appear in slippable regions. Therefore, we first
perform slippage analysis for all r-neighborhoods [Gelfand and
Guibas 2004]. Afterwards, we ignore slippable regions in the re-
maining computation. Then, we compute line features [Bokeloh
et al. 2009]. For a triangle mesh, this is the subset of the edges with
adjacent non-coplanar faces. We then generate candidate transfor-
mations by matching line features.

Aggregation: For each candidate transformation T and its in-
verse we match the whole scene S against T(S). An exact algo-
rithm would compute an intersection of the two meshes (in practice,
we will resort to an approximation, using voxels rather than trian-
gle fragments as representation [Bokeloh et al. 2010]). For each
matching fragment, we record the matching element and the trans-
formation indices in a table. After all transformations are processed
the table encodes all detected partial r-symmetries for the shape.

Extraction: We extract a segmentation of the input scene into mi-
crotiles by region growing starting at an arbitrary (non-processed)
element and expanding the current tile with elements that have the
same set of symmetry transformations. We use the table we com-
puted in the previous step to look up the transformations that map
the geometry to r-symmetric parts of the surface. After the initial
segmentation, we compute the equivalence classes of points (the
cliques discussed in Figure 1). We transform the voxels that belong
to a given microtile, and search in the overlapping voxels for the
equivalent microtile instance.

3.1 Algorithm Overview:

1. We start by computing a voxel representation of the input
geometry, that we store in an octree similar to Bokeloh et
al. [2010].

2. We compute and mark all r-slippable voxels and treat them
separately further on.

3. We then detect the line features that give queues for symmetry
transformations s. [Bokeloh et al. 2009]. We use them to
compute the actual set of candidate transformations that map
pairs of r-symmetric points.

4. We compute the set of partial r-symmetries for the scene by
iterating over the set of candidates and for each transformation
T:

• We mark all parts of the model r-symmetric w.r.t. T or
T−1

• We store the information in a global table.

5. We subdivide the scene into segments based on the symmetry
transformation table we computed.

6. Finally, we find all equivalent tiles using the symmetry trans-
formations that map voxels of each tile to r-similar voxels.

3.2 Correctness and Complexity

The above algorithm computes a correct microtile decomposition
if there is no rigid transformation T ∈ T such that points on dif-
ferent microtiles of the output are r-symmetric under T. In other
words we need to compute all transformations that can map two r-
regions on S symmetrically. This is the major difference between
our symmetry analysis and most of the related work [Bokeloh et al.
2010; Bokeloh et al. 2011; Lipman et al. 2010], where it suffices to
find some, but not all, of the partial correspondences present in the
model.

There are three cases of r-neighborhoods, that we need to consider
in order to correctly decompose them in microtiles. These neigh-
borhoods (as well as the respective microtiles) can be 2-slippable,
1-slippable or non-slippable. The 2-slippable surfaces on a trian-
gle mesh can only be planes. They are characterized by a single
microtile, and we check for its existence in the input model dur-
ing slippage analysis. If a point on a triangle mesh is 1-slippable,
then its r neighborhood contains one or more edges, that are par-
allel to the line features of S. Even though 1-slippable microtiles
are mapped by infinitely many transformations to symmetric tiles,
it is possible to consider segments of non-zero lengths instead of the
infinitely small microtiles. Detecting discrete symmetries between
such segments allows to decompose the 1-slippable microtiles. To
this end, we need to compute all transformations that map pairs of
line features to each other (s. [Bokeloh et al. 2009]).

It remains to find all transformations that map non-slippable neigh-
borhoods symmetrically. Observe that any such region has to con-
tain at least two non-parallel edges (line features). Transformations
that map pairs of non-parallel line features have to align the center
of the shortest line segment between the two lines and the line di-
rections. These transformations can be computed by exhaustively
checking all possible pairs of features at distance no more than r
from each other.

For n input triangles, the abstract algorithm performs no more than
O(n4) intersection computations of S against a transformed ver-
sion of itself (which can trivially be computed in quadratic time).
In practice, for non-degenerate scenes, O(n2) such matches with
slightly super-linear costs (using spatial data structures for inter-
section computation) could be expected.

3.3 Results

We have implemented a simple prototype of the algorithm outlined
above. We follow the method of [Bokeloh et al. 2010] and use a
volumetric grid to discretize the symmetry information: cubes of
side length h are annotated with transformations.

We have applied our prototype implementation to a few scenes to
visualize the structure of the decomposition. For the tests we set
the radius of symmetry to 0.008 (Figure 2) or 0.016 (all other tests)
of the diagonal of the bounding box of the scene. The voxel size
was set to 1/512 of the diagonal (1/256 for Fig. 4). To prevent
errors due to coarse discretization, classes of microtiles were com-
puted only for microtiles larger than 32 voxels. Very small tiles
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Figure 2: Simple models. Left: Simultaneous decomposition of three simple meshes in one scene, S = S1 ∪ S2 ∪ S3. Right: decomposition
of 7 boxes in one scene. Equivalent tiles in each figure were computed and colored automatically. The number of different microtiles are 6,
5, and 5 for S1,S2,S3. Each box on the right has 3 microtiles, as expected. The run-time for the decomposition of the first three meshes was
around 10 min, the boxes on the right took approx. 1min.

usually indicate places where a finer discretization is required and
we could not reliably compute the equivalence classes of such mi-
crotiles. Computing of the candidate transformations and the ta-
ble that stores the set of transformations for each voxel are imple-
mented in parallel. All test were performed on a single Intel Core 2
Quad Q9400 CPU with 4 cores running at 2.66GHz.

Figure 2 shows a very simple test scene composed out of boxes.
The left hand side shows a scene of three different shapes, decom-
posed simultaneously. On the right, a simpler scene of independent
boxes is decomposed. For these simple scenes, we obtain accurate
results up to the resolution of the discretization. In Figure 3, we
apply the algorithm to more complex meshes of architectural ob-
jects. We depict 2-slippable tiles in gray, 1-slippable in yellow (ir-
respective of the class), and only show the large tiles, as explained
above. The corresponding unassigned area is shown in dark gray.
The computed decompositions are in most regions qualitatively cor-
rect, however, the grid-discretization leads to certain variations at
the boundary. We observe some unassigned area, but its diameter is
below r in all of the examples. Because the voxel-discretization
does not permit a 1 : 1 mapping, boundaries show some vari-
ability within voxel resolution (particularly visible at the sides of
the courthouse). Furthermore, rotational patterns are numerically
problematic (e.g., oversegmentation of the steps of the staircase).
Similar results are obtained for the models in Figure 4. We com-
pare our results to the previous method by Bokeloh et al. [2009],
which is computationally mostly similar but uses (as most others)
simple region growing for segmentation. The method is similarly
susceptible to discretization and boundary artifacts. It does not cap-
ture all symmetries, but samples prominent representatives due to
the area/instance ratio heuristic employed. Global symmetries of
the steps are detected, which do not affect the microtiles but are
obtained implicitly with our new approach.

This implementation is only intended as a proof of concept, but
there are already some direct applications: We can determine
whether two shapes are r-similar, by matching their respective mi-
crotiles. The three box sculptures in Figure 2 are made of the same
tiles, except from the leftmost, which contains one extra, unique
tile, colored violet. Similarly, the isolated tower at the left of the
castle in Figure 3 is r-similar to the castle, which contains addi-
tional tiles. A further example is demonstrated in Figure 4 (right).
A sequence of models with increasing complexity is decomposed
into microtiles, revealing the redundancy in the model collection.

Figure 5: Drawbacks of the naı̈ve microtile extraction method:
The global voxelization results in different voxel representations for
equivalent microtiles (top) and artifacts inside voxels on tile bound-
aries (bottom left). One- and two-slippable microtiles are excluded
from the analysis (bottom right).

3.4 Discussion

The voxel- and feature-based approach has some drawbacks we
need to address: The precision of the decomposition is limited by
the discretization of the scene. Because we voxelize the scene glob-
ally, equivalent microtiles will be decomposed in different ways,
and will have a slightly different voxel representations (see Figure
5). We are sometimes unable to correctly compute the equivalence
classes or cliques inside voxesl on tile boundaries (see Figure 5). In
order to reduce the artifacts on tile boundaries we post-process the
initial segmentation based on pairwise matching. We transform the
microtiles with each of the r-symmetry transformations to find their
equivalent counterparts. Because a single tile will overlap multiple
other parts, we gather votes from the overlapping voxels and select
the tile that is most similar in terms of size and set of symmetry
transformations.

Another practical issue is related to the precision with which we
can compute the matrices for the actual transformations. Because
we align each of them at a single corner feature, the mapping be-
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Figure 3: More complex models: Castle (left), staircase (middle), courthouse (right) models decomposed into r-microtiles. The classes can
be computed reliably only for microtiles larger than 32 voxels. The diameter of this uncertain area is smaller than r. Run-time: around 1
hour (castle), 18 min (staircase), and 40 min (courthouse). Far right: comparison to Bokeloh et al..
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Figure 4: A spaceship model (left) - the tiles are recognized correctly, but again, some unassigned area remains (gray). A cascade of models
with increasing complexity (right) - the newly added parts create new tiles.

comes more imprecise the longer the distance to the feature. In
combination with the voxel quantization, the result is that near tile
borders, r-symmetry detection becomes inconsistent and the set of
transformations for many of the voxels is incomplete. This shows
up as a large amount of small microtiles, that make further extrac-
tion of the equivalence classes virtually impossible. We address
this problem by a filter: near tile boundaries, we merge small tiles
to neighboring larger one, whenever the voxel distribution and set
of transformations of the smaller one suggest that it can be a part
of the larger tile. We never discard a tile that has at least one voxel
completely surrounded by voxels on the same tile. This ensures that
the area we filter will converge to zero if the voxel size does so.

The final important limitation is the runtime of the decomposition
algorithm. It is rather large for two reasons. First, the algorithm per-
forms all pairwise comparisons explicitly. Small test scenes com-
pute in a few minutes, medium complexity scenes such as the castle
require 1 hour (see Figure 2,3). Both the number of features and
the required resolution for representing the symmetries are limiting
factors, and both act quadratically on the run-time.

The second limiting factor for the runtime is the large number of
self-correspondences that we compute. Even geometrically simple
models can exhibit a large number of partial self-symmetries, mak-
ing a microtile decomposition expensive to compute in general. For
example, the transformation candidates we test for the courthouse
model in Figure 4 and Figure 5 is more than 3 million. To combat
this, we try to discard candidate transformations as early as possi-
ble. We ignore transformations between corner features that fail to
align all edges meeting at the corner. We discard duplicate transfor-
mations, and those that map corner points that are not r-symmetric.
If a transformation matches two line features, we only consider it
as a valid candidate if all 1-slippable voxels along the shorter fea-
ture a mapped to symmetric (1-slippable) voxels along the longer

feature. Despite these optimizations, the run time and the number
of remaining transformations remains rather large (see Figures 2, 3,
4).

4 Efficient r-Symmetry Detection

The microtile decomposition method used in [Kalojanov et al.
2012] has several significant limitations. These fall into two cat-
egories - implementation specific, and conceptual.

The algorithmic (or conceptual) challenges that were not solved
come from the nature of the analysis required to obtain a microtile
decomposition. We need to compute all rigid transformations that
map any point on the input surface to another point such that their
neighborhoods with radius r match. The number of such mappings
is substantial regardless of the scene complexity, and even without
explicitly computing the infinite amount of matches on the slippable
portions of the input model undergoing continuous r-symmetry.

On the other hand, implementation specific limitations are caused
by the use of a global scene discretization to perform and record
symmetry information about the object. In previous works [Kalo-
janov et al. 2012; Bokeloh et al. 2010], the authors transform the
complete scene and match it with itself using a spatial structure (an
octree) to compute and store self similarities. Apart from being in-
efficient, this approach leads to discretization artifacts, especially at
the boundaries of the symmetric regions. These problems are am-
plified by imprecision caused by the floating point representation of
the transformation matrices.

In the following, we will describe a more efficient and robust algo-
rithm for r-symmetry detection and microtile decomposition. The
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new approach and its implementation are faster by up to two or-
ders of magnitude compared to the naı̈ve version. The significantly
improved performance is essential, because it turns microtile detec-
tion for triangle meshes into a feasible pre-processing step for many
geometry processing applications. Also, the method will allow to
compute building blocks and cut the input surface exactly at the mi-
crotile boundaries, which is essential for applications involing the
computation of 3D realizable building blocks.

4.1 Feature-based Discretization

We improve the performance the naı̈ve microtile extraction algo-
rithm in two aspects. On the one hand, we simplify and optimize
the implementation of the individual steps, required to obtain the
building blocks, and perform the most time-consuming parts in par-
allel. On the other hand, we propose a different approach in terms
of algorithm and scene discretization. The latter makes the decom-
position robust to discretization artifacts because unlike the naı̈ve
version, the segmentation no longer has to be performed on a per-
voxel basis, which allows to reliably compute exact boundaries and
microtile representation invariant under rigid transformations.

In the following, we will prove that in order to compute all equiv-
alence classes of rigid r-neighborhoods on a triangle mesh it suf-
fices to classify the r-neighborhoods centered at geometric corners
or geometric edges. That is, we will be able to deduce a microtile
decomposition for the entire input surface if we consider a finitely
many feature points and line segments.

In Section 3.2 we showed that in order to classify non-slippable
regions in equivalence classes (and subsequently microtiles), one
needs to compute all transformations that match parts of those re-
gions symmetrically (r-symmetrically).

Lemma 1 Every non-slippable region is characterized by at least
two non-parallel geometric edges in the triangle mesh. Note that
those are actual edges in the geometry, not every triangle edge
needs to be considered.

Proof: Consider a point x of the surface defined by the triangle
mesh. Assume that there exists not more than one geometric edge
intersecting the r-neighborhood of x . Then it follows by defini-
tion that the r-neighborhood of x is either two-slippable or one-
slippable.

In the naı̈ve algorithm for microtile detection (Section 3.2), corner
features were used to compute candidate transformations. In a sec-
ond step, symmetric regions were computed by transforming and
matching the whole input mesh to itself. We will show that it suf-
fices to compute a decomposition into partial symmetries only for
the key points (corner features), which corresponds to computing
microtiles w.r.t. r-symmetry for r → 0. It is then possible to de-
duce the mesh segmentation into microtiles from this intermediate
representation.

Lemma 2 It suffices to decompose the r-neighborhoods of all geo-
metric corners and edges to obtain a surface decomposition into
microtiles in the sense defined in Section 3 in [Kalojanov et al.
2012].

Proof: Consider a point x on the surface that is a non-slippable
region. Non slippable regions consist of r-neighborhoods of cor-
ner features - we construct a corner feature at the closest point to
each pair of non-parallel edges. Because we know which microtile

does the corner feature belong to, we can determine at least one mi-
crotile, such that x is in the r-neighborhood of a point on the tile.
This shows that we can reconstruct each non-slippable point of the
input shape from the r-neighborhoods of its corner features. We
therefore need to decompose the corner feature into microtiles to
encode the complete surface.

Limitations: Note that the microtile decomposition discussed
here is not always equivalent to the microtiles w.r.t. to r-symmetry
from [Kalojanov et al. 2012], because building blocks, which do not
contain a corner point, are merged with the nearest microtile which
does. Therefore some of the redundancies present in the input shape
are not captured. On the other hand the new decomposition con-
forms the abstract definition of microtiles, presented in the related
work, if we restrict the set of defining point-wise correspondences
to the ones who map r-neighborhoods of corner features.

Note, that the slight redundancy in the new microtiles has no influ-
ence on the set of shapes that can be assembled from them, i.e. the
possible shape variations remains the same and therefore the claim
in the main theorem in [Kalojanov et al. 2012] remains valid for the
new decomposition. This follows from Lemma 1, which implies
that all possible variations of rigid regions are represented by mi-
crotiles, which contain at least two non-parallel edges with distance
smaller than r.

Benefits: The above lemma allows to simplify the r-symmetry
detection in the following way. We no longer need to match the
complete shape against its transformed copy in order to compute
overlaps that define partially symmetric regions. Instead, we need
to compute all pairs of geometric corners and edges that are r-
symmetric. If we match one-slippable regions separately, it is
only necessary to match all geometric corners in addition to all
r-neighborhoods defined by skewed geometric edges at distance
shorter than r. In our experiments, we could safely ignore the latter,
but they can be trivially handled by introducing a ”virtual” corner
feature for each such r-neighborhood.

Because we match only regions of radius r around points of inter-
est, we eliminate the biggest performance bottleneck of the naı̈ve
algorithm, and replace it with a cheaper and easily parallelizeable
alternative.

Restricting the decomposition to characteristic points has advan-
tages not only in therms of the reduced running time of the algo-
rithm. It also allows to exactly match features to each other instead
of having to compare voxelized parts of the surface, eliminating
errors caused by miss-alignment of the discretized regions of the
mesh. This is a critical advantage over the previous work, which
suffered from inconsistencies at tile boundaries and required filter-
ing to resolve errors.

4.2 Approximate Neighborhood Matching

An additional improvement of the r-symmetry detection stage of
the algorithm can be obtained by matching the surface at pairs of
key-points approximately. Instead of considering exact geomet-
ric matches, we compute how likely it is that the regions are r-
symmetric. There are various ways to do that. We implemented
a simple method that works on the voxelized geometry we use for
the previous stages of the algorithm. Even though this voxelization
approach was used to perform global matches in the naı̈ve detec-
tion algorithm, here we are not interested in the boundaries of the
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matching regions, and do not have to consider the discretization
artifacts in Figure 5.

Let Nr(x) be a an r-neighborhood of a corner feature x, and let
y be an candidate for a r-symmetry under a transformation T . To
perform a match, we need to compare the geometry inside Nr(x)
to T (Nr(y)) (the geometry inside Nr(y) transformed with T ). We
do this by matching all fragments in the voxelized region Nr(x).

Definition 1 A fragment is a voxel-triangle overlap and consists
of a position – the projection of the cell center onto the triangle and
a normal – the geometric normal of the triangle (we do not consider
fake or smooth normals). In other words, a fragment is a sample of
an infinite plane aligned with a triangle intersecting a voxel. When
comparing two corner points for geometric similarity, we consider
all fragments in their r-neighborhoods.

Definition 2 Let f, g be a fragments. We say that f and g are
matching fragments if the angle between the normals of f and g
is smaller than an angle threshold tα (we used 20 ◦ in our tests).
Formally,

m(f, g) :=

{
1 ∠(f.n, g.n) < tα
0 otherwise,

where ·.n denotes the fragment position and normal, and ∠(·, ·) is
the angle between two vectors.

Definition 3 We define the distance between a fragment f and a set
of fragments G to be the distance to the closest matching fragment
in G. Let Gf := {g ∈ G : m(f, g) = 1} be the set of fragments in
G that match f . Let p(f, g) be the projection of the position f.p of
the fragment f onto the infinite plane defined by (g.p, g.n).

dist(f,G) :=

{
min {|f.p− p(f, g)| : g ∈ Gf} if Gf 6= ∅
∞ otherwise,

Definition 4 We define the similarity between two sets of fragments
to be the percentage of matching fragments inside these sets, closer
than a distance threshold td (we used r

10
+vd, where vd is the length

of the voxel diagonal). Let G denote a set of fragments, and f be a
fragment. We define

M(f,G) :=

{
1 dist(f,G) < td
0 otherwise,

and let F,G be two sets of fragments, then

Sim(F,G) := max


∑
f∈F

M(f,G)

|F | ,

∑
g∈G

M(g, F )

|G|


In order to compute how closely two r-neighborhoods
Nr(x), Nr(y) resemble each other, we compute
Sim(Fr(Nr(x)), F r(Nr(y)), where Fr(·) gives the fragment
contained inside the neighborhood. Because Sim(·, ·) ∈ [0, 1],
we chose a threshold (t = 0.9 in our tests) and considered
neighborhoods with similarity above it to be equivalent, which
makes the respective center points r-symmetric.

Note that this formulation of similarity allows to match arbi-
trary sets of fragments, and is not restricted to individual r-
neighborhoods. This allows to compare larger subsets of the in-
put surface to each other and distribute potential differences across

larger surface area, allowing to identify equivalent microtiles even
if the similarity of some pairs of their features is below the initial
threshold t.

Note that the approximate matching of r-neighborhoods of key-
poins can be used to match noisy or deformed input data. However
this does not allow to directly apply the algorithm on such mod-
els, because it is unclear how to select unique key-points to identify
each non-slippable region of the input model. The benefits for our
experiments on clean input models are the added robustness to nu-
merical errors and the ability to match geometry undergoing very
small deformations.

4.3 Algorithm overview

Based on the above derivations, we can formulate a microtile ex-
traction algorithm that operates on a finite subset of points on the
input surface and therefore does not require global self-similarity
matches. More importantly, the new discretization into corner fea-
tures is invariant under rigid transformations, allowing to compute
correspondences between pairs of individual elements. This was
not possible to do with the naı̈ve algorithm, because, in general, a
rigidly transformed voxel will overlap more than one other voxel.

1. Perform a slippage analysis of the model.

We do this by computing a voxel representation of the input
geometry, which we store in a uniform grid. We then compute
all r-slippable voxels.

2. Find key points and use them to compute candidate transfor-
mations.

We compute all geometric edges and their intersections,
which we call corner points or corner features (see Figure 6).
We then compute all possible transformation that might map
two corner features symmetrically. Similarly to the naı̈ve al-
gorithm we try to discard invalid transformations as early as
possible.

3. Compute the pairwise correspondence of the corner features
(see Figure 6).

We use the voxel grid computed in the first step of the al-
gorithm to approximately match r-neighborhoods of corner
points to each other. This gives us a distance, which we
convert in a probability for a pair of corner features to be r-
symmetric.

We propagate and make probabilities (p) consistent within
cliques in the correspondence graph. We use a probability
threshold (p ∈ [0.01, 0.04] in most of our experiments) to de-
termine equivalence and convert each connected component
to a clique by ”inserting” the missing edges.

An alternative approach for the same operation on noisy or de-
formed data can be implemented via spectral clustering simi-
larly to Lipman et al. [2010].

4. Compute microtile membership for the corner features.

We only need to sift corner features to obtain the decomposi-
tion. The remaining points of the surface are contained in the
r-neighborhoods of the respective corners and edges.
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two-slippable

line features equivalent corner features microtiles

one-slippable

Figure 6: Mircotile decomposition pipeline. First, all geometric edges are computed and later used to identify all corner features. Then
r-neighborhoods of corner features are matched to compute equivalence cliques. Features and neighborhoods with the same outgoing
equivalence transformations are merged into microtiles (third image). Tiles of the same shape have the same color. In the third image,
two-slippable geometry is gray and one-slippable pieces are burgundy.

To sift corner features we employ the same approach as in
the previous step of the algorithm: we compute the likeli-
hood with which cliques of corner features share the same
microtile class by comparing the relative locations of their el-
ements (corner features).

5. Compute a segmentation of the shape into microtiles (see Fig-
ure 6).

We already have a microtile decomposition for the corner
features. The r-neighborhood of the latter together with the
neighborhoods of their connecting edges cover the complete
input surface, which allows us to segment it into building
blocks.

Note that this segmentation ignores microtiles that do not contain a
corner feature, but is nevertheless a valid microtile decomposition.

The most significant difference with the naı̈ve algorithm is the
sparse discretization into corner features as opposed to voxels. A
voxelized representation of the surface is still used to match po-
tentially symmetric r-spheres around corner points, however these
matches are not computed per voxel, but for a small number of
corner features. This allows to have one-one mappings between
discrete elements, for which we compute self-correspondences. In
the first algorithm, we had to compute per-voxel correspondences,
which caused discretization artifacts on tile boundaries because
each transformed voxel overlaps multiple other voxels. The new
discretization allows us to eliminate the surface parts that are not
assigned to a microtile (Figure 7).

4.4 Compact Transformation Representation

Real-life models often need to be decomposed into a set of mi-
crotiles, such that many elements have global symmetries. For ex-
ample a corner of a box or building is 3-way symmetric to itself.
This produces redundancies in the set of transformations that map
the feature to other surface points symmetrically. Namely the num-
ber of valid transformation between a pair of features is a multiple
of the number of transformations that map each of the feature to it-
self. For the microtile decomposition we need to compute and store
cliques of corner features. To reduce the computational effort and
storage requirements we do not store all transformations that map
pairs of points in a clique symmetrically. We can easily show that

it suffices to to store one transformation for each point in the clique
plus a single (and complete) set of transformations that maps one
of the points to itself symmetrically. The transformations should
map p1 to p2, ..., pn. All other mappings can be reconstructed as a
composition of the stored ones if necessary.

In addition to alleviating the need to store transformation matrices,
this property of the microtiles allows to discard some of the candi-
date matches. We test and classify each corner feature according
to the number of self-symmetries. When we are testing for equiv-
alent corner features we only have to test a pair of them if they
have the same number of self-symmetries. In practice we were able
to eliminate up to a third of the candidate transformations without
having to perform additional tests. Because computing the geomet-
ric matches is the main computational bottleneck, and the number
of potential matches is given by the number of candidate transfor-
mations, we reduced the overall run time of the decomposition with
30% test models like the courthouse in Figure 7 and the castle in
Figure 6.

Another possibility to eliminate candidate symmetry transforma-
tions of individual features is to classify the outgoing line features
by length and to ensure that each transformation maps edges shorter
than the symmetry radius to edges of the same length. Edges longer
than the radius should be mapped to counterparts not necessarily
equal in length, but not shorter than the radius of symmetry.

With the above optimizations we were able to significantly reduce
the number of geometric matches we have to compute. For the
courthouse model (Figure 7) we could eliminate 2.92 million out of
the initial 3 million possible matches before having to perform an
actual distance test on the voxelized r-neighborhoods around pairs
of corner features. For the model in Figure 6 we could eliminate
12.39 million transformation candidates and only had to perform
around 160000 matches.

4.5 Parallel Implementation

An additional advantage of matching individual regions around cor-
ner features is related to the implementation of the algorithm. As
opposed to the naı̈ve approach where symmetric regions were com-
puted by matching the entire shape to a transformed copy, apply-
ing the insights from Lemma 1 and Lemma 2 allows us to use lo-
cal matches instead. We compare the geometry inside (multiple)
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Figure 7: Left: Output of the naı̈ve decomposition algorithm for the courthouse model. The discretization artifacts on the stairs remain even
after filtering. Right: The microtile decomposition is computed exactly per key point (geometric corners) and then transferred to the voxelized
representation for illustration purpose The slight discrepancies in the two segmentations are caused by limitations in the naı̈ve algorithm,
which prevent accurate detection of correspondences between very small regions.

Figure 8: Microtile decompositions of two test models downloaded
from thingiverse.com. The cathedral on the left was decomposed in
38s into 931 microtiles of 527 classes. The church on the right was
decomposed in 3min into 2276 microtiles of 395 classes.

pairs of spherical r-neighborhoods, and these operations are easier
to distribute across multiple threads. In addition a complex hierar-
chical structure like an octree is no longer necessary – it is more
efficient to use an uniform grid an match all voxels inside the two
r-neighborhoods of the pair of corner features.

4.6 Results

We implemented and tested the efficient microtile detection algo-
rithm on a PC with an Intel Core i7-3770K CPU with 4 cores run-
ning at 3.5GHz and NVIDIA GeForce 660Ti GPU. We used the
GPU to compute a scene voxelization and to perform all geometric
matches in the third step of the algorithm (see Section 4.3). The
latter proved to be slightly faster (20%) compared to a parallel CPU
implementation.

The efficient r-symmetry detection algorithm reduced the overall
running time significantly – up to two orders of magnitude com-
pared to the naı̈ve version. This allows to efficiently decompose
non-trivial input models. The resulting decomposition does not suf-
fer from artifacts at tile boundaries and the better efficiency allows
computing a more-detailed decomposition. Note, that the visualiza-

Figure 9: It took 28s to decompose the above building on into 921
microtiles of 196 classes.

Figure 10: Left: Output of the naı̈ve decomposition algorithm for
a castle with 4 towers. Run-time was approximately 1 hour. Right:
the new algorithm is able to compute more detailed decomposition
in 52s.

tion artifacts in the figures (e.g. Figure 8 and Figure 9) are caused
by the use of a low resolution global 3D texture to color the indi-
vidual building blocks.

We evaluate the new decomposition algorithm on mostly clean in-
put models. The approximate neighborhood matching around indi-
vidual features allows to handle slight deformations and typical in-
consistencies in the geometric representation caused by the floating
point representation of symmetric vertices and transformation ma-
trices. However, we treat discrepancies above a user-defined thresh-
old in the pairwise distances of r-neighborhoods as substantial and
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Figure 11: This castle model was decomposed in 4min into 2078
microtiles of 962 classes. We tested 2 million r-symmetry candi-
dates – triplets of two features and a transformation.

did not identify the corresponding features as equivalent.

4.7 Discussion

In this document we showed how to lift important limitation of
the microtile analysis introduced in [Kalojanov et al. 2012]. The
main theoretical insight here is that although r-symmetry and r-
similarity are defined per (infinitely-small) point, it suffices to ana-
lyze a finite amount of surface elements in order to perform a com-
plete analysis (and segmentation) of the input surface. The elements
we consider here are geometric edges and corners and slippable re-
gions of the input surface.

With the algorithms for r-symmetry detection and microtile decom-
position discussed here, we introduce a novel and practical tool for
shape analysis. The insights we employed in order to develop the
efficient extraction algorithm allow us to develop a practical tool
for partial symmetry detection and use it as a starting point of sev-
eral interesting application for procedural modeling. While there
certainly are other methods for symmetry detection and different
definitions of building blocks, so far only the microtiles, introduced
here, allow to systematically compute and characterize a concrete
family of shape variations - an essential property for applications in
the area of shape analysis and inverse procedural modeling.

We improved the reliability of the naı̈ve decomposition approach,
which suffered from fundamental problems related to the global
discretization and self-matching routines. This allowed us to re-
liably compute detailed decomposition into microtiles w.r.t. r-
symmetry, thus making it possible to perform complex shape anal-
ysis with the resulting building blocks. Furthermore, we drastically
improved the efficiency of the detection algorithm, which allows its
use as a pre-processing stage for modeling applications.
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