
To appear in the High Performance Graphics 2009 conference proceedings

A Parallel Algorithm for Construction of Uniform Grids

Javor Kalojanov ∗

Saarland University
Philipp Slusallek †

Saarland University
DFKI Saarbrücken

Abstract

We present a fast, parallel GPU algorithm for construction of uni-
form grids for ray tracing, which we implement in CUDA. The al-
gorithm performance does not depend on the primitive distribution,
because we reduce the problem to sorting pairs of primitives and
cell indices. Our implementation is able to take full advantage of
the parallel architecture of the GPU, and construction speed is faster
than CPU algorithms running on multiple cores. Its scalability and
robustness make it superior to alternative approaches, especially for
scenes with complex primitive distributions.

Keywords: grid, uniform grid, regular grid, CUDA, ray tracing

1 Introduction

Uniform grids are used in a wide variety of applications including
ray tracing of dynamic scenes. Their use as an acceleration struc-
ture for ray tracing is motivated by the simplicity of the structure
which allows fast, per-frame rebuild, even for very large scenes.
While other spatial structures, such as kd-trees and BVHs based on
the Surface Area Heuristic, can provide better ray tracing perfor-
mance, their construction is very time consuming. GPU-algorithms
that allow per-frame rebuild of hierarchical data structures in real
time were introduced only recently [Lauterbach et al. 2009; Zhou
et al. 2008] and build times are still considerably slower than those
of grids. We present a fast and parallel grid construction algorithm
that can speed up rendering of animated scenes. We demonstrate
that in a number of different scenarios, the build time allows us to
trace a significant number of rays before the overall performance
becomes inferior to concurrent approaches based on hierarchical
data structures.

The recent introduction of the CUDA programming model [Nick-
olls et al. 2008], along with the advancement in GPU hardware de-
sign, made GPUs an attractive architecture for implementing paral-
lel algorithms such as ray tracing (see [Popov et al. 2007; Günther
et al. 2007; Zhou et al. 2008; Lauterbach et al. 2009]). The use
of uniform grids has been investigated both for CPU and GPU ray
tracers [Wald et al. 2006; Lagae and Dutré 2008; Purcell et al. 2002;
Es and İşler 2007] but we are not aware of other grid construction
algorithms on current GPU architectures implemented with CUDA.

The main disadvantage of uniform grids is the inability to adapt to
the distribution of the geometry in the scene. They tend to eliminate
less intersection candidates compared to other structures. Neverthe-
less Wald et al. [2006] demonstrate an efficient traversal method for
coherent rays on CPUs with performance competitive to approaches
based on hierarchical structures. In this paper, we present a novel

∗e-mail:javor@graphics.cs.uni-sb.de
†e-mail:slusallek@dfki.de

construction algorithm that exploits the massively parallel architec-
ture of current GPUs. The construction of the grid does not depend
on atomic synchronization, which enables us to efficiently handle
scenes with arbitrary primitive distributions. We use an atomic ad-
dition on shared memory in a non-critical part of our implemen-
tation for convenience, but this is not necessary and does not hurt
performance.

2 Previous Work

While fast grid construction algorithms for CPUs have been inves-
tigated [Ize et al. 2006; Lagae and Dutré 2008], to our knowledge,
there are no attempts to efficiently implement a construction al-
gorithm for a highly parallel architecture such as the GPU. Eise-
mann and Décoret [2006] propose to use GPU rasterization units
for voxelization of polygonal scenes in a grid. Their approach is
limited to computing a boundary representation of the scene, which
is only a part of the information required for ray tracing. Patidar and
Narayanan [2008] propose a fast construction algorithm for a grid-
like acceleration structure, but their algorithm is limited to fixed
resolution and while it performs well for scanned models, it relies
on synchronization via atomic functions which makes it sensitive
to triangle distributions. Ize et al. [2006] describe a number of par-
allel construction algorithms for multiple CPUs. Their sort-middle
approach also does not rely on atomic synchronization, but the the
triangle distribution in the scene influences the work distribution
and the algorithm performance.

The idea of reducing the construction process to sorting has been
used by Lauterbach et al. [2009] for their LBVH structure. In the
particle simulation demo in the CUDA SDK [Green 2008] sorting
is used for construction of an uniform grid over a set of particles.
The approach described here, and concurrently proposed by Ivson
et al. [2009], is more general because it handles geometric primi-
tives overlapping any number of cells. This allows for construction
of grids that can be used as acceleration structures for ray tracing
geometric surfaces.

3 GPU Grid Construction

In the following section we describe our parallel grid construction
algorithm and its implementation in CUDA.

3.1 Data Structure

Like the compact grid representation by Lagae and Dutré in [Lagae
and Dutré 2008], we store the structure in two parts. An indirection
array contains triangle references. The grid cells are stored sepa-
rately. Each grid cell stores the beginning and the end of a range
inside the array such that the triangles referenced in this interval
are exactly those, contained in the cell. In Lagae’s representation,
a single index per cell is stored. This index is both the beginning
of the interval of the current cell, and the end of the interval for
the previous. We store independent cell intervals which doubles the
memory consumption but simplifies the parallel building process,
by allowing us to initialize all cells as empty prior to the build and
then only touch the non-empty cells.

1



To appear in the High Performance Graphics 2009 conference proceedings

Algorithm 1 Data-Parallel Grid Construction. Kernel calls are suf-
fixed by <<< >>>.

b← COMPUTE BOUNDS()
2: r ← COMPUTE RESOLUTION()
t← UPLOAD TRIANGLES()

4: G ← 128, B ← 256, i← ARRAY OF G + 1 ZEROES
i← COUNT REFERENCES<<<G,B>>>(t, b, r)

6: i← EXCLUSIVE SCAN<<<1,G + 1>>>(i)
n← i[G] . NUMBER OF REFERENCES

8: a← ALLOCATE REFERENCES ARRAY(n)
a← WRITE REFERENCES<<<G,B>>>(t, b, r, i)

10: a← SORT(a)
cells← EXTRACT CELL RANGES<<< >>>(a)

3.2 Algorithm

Constructing a grid over a scene consisting of triangles (or any other
type of primitive), amounts to determining the bounding box of the
scene, the resolution of the grid in each dimension and, for each
cell of the grid, which triangles overlap it. Our construction algo-
rithm (Algorithm 1) consists of several steps. First we compute
an unsorted array that contains all primitive-cell pairs. This array
is sorted and the grid data is extracted from it in a final step. The
same idea is used in the particle simulation demo in the CUDA
SDK [Green 2008]. The only difference is that each of the prim-
itives handled by our algorithm can overlap arbitrary number of
cells.

3.2.1 Initialization

Once the bounding box of the scene and the grid resolution is de-
termined on the host, we upload the primitives to the GPU. Since
computing the bounding box involves iteration over the scene prim-
itives, we perform this operation while reorganizing the data for
upload.

3.2.2 Counting Triangle Copies

Because it is not possible to dynamically allocate memory on
GPUs, we have to know the size of the array that stores the primitive
references in advance. To compute it, we first run a kernel that loads
the scene primitives in parallel and for each determines the number
of cells it overlaps (Line 5). Each thread writes the counts into an
individual shared memory cell and then a reduction is performed
to count the total number of primitive-cell pairs computed by each
thread block. Next we perform an exclusive scan over the resulting
counts to determine the total number of primitive-cell pairs and al-
locate an output array on the device. The scan additionally gives us
the number of pairs each block would output.

3.2.3 Writing Unsorted Pairs

Having the required memory for storage, we run a second kernel
(Line 9). Each thread loads a primitive, computes again how many
cells it overlaps and for each overlapped cell writes a pair consisting
of the cell and primitive indices. The output of the exclusive scan
is used to determine a segmentation of the array between the thread
blocks. We have to avoid write conflicts inside a block since each
thread has to write a different amount of pairs. We can use the
shared memory to write the pair counts and perform a prefix sum
to determine output locations. In our implementation each thread
atomically increments a single per-block counter in shared memory
to reserve the right amount of space.

3.2.4 Sorting the Pairs

After being written, the primitive-cell pairs are sorted by the cell
index via radix sort. We used the radix sort implementation from
the CUDA SDK examples for this step of the algorithm.

3.2.5 Extracting the Grid Cells

From the sorted array of pairs it is trivial to compute the reference
array as well as the triangles referenced in each cell. We do this
by invoking a kernel that loads chunks of the sorted pairs array into
shared memory. We check in parallel (one thread per pair) if two
neighboring pairs have different cell indexes. This indicates cell
range boundary. If such exists, the corresponding thread updates
the range indexes in both cells. Note that in this stage of the algo-
rithm only non-empty cells are written to. After this operation is
completed the kernel writes an array that stores only the primitive
references to global memory. In this part of the implementation we
read the data from shared memory and the writes to global memory
are coalesced, so the introduced overhead is very small. It is also
possible to directly use the sorted pairs to query primitives during
rendering. However getting rid of the cell indices frees space, and
accesses to the compacted data during rendering are more likely to
get coalesced.

3.3 Triangle Insertion

In our algorithm we have to compute which cells are overlapped by
each input triangle twice. When counting the total number of ref-
erences (Line 5) we conservatively count the number of cells over-
lapped by the bounding box of the triangle. Afterwards, when we
want to write triangle-cell pairs (Line 9), we do a more precise (but
still efficient) test. We check if each cell overlapped by the triangle
bounding box is intersected by the plane in which the triangle lies.
An exact triangle-box overlap test [Akenine-Möller 2001] did not
pay off for any of the tested scenes.

We test our implementation only with scenes consisting of triangles,
but the same approach can be used for various geometric primi-
tives. The only requirement is that one can (efficiently) determine
the cells of the grid that each primitive overlaps.

3.4 Analysis

Both the complexity of the algorithm and the performance of the
implementation are dominated by the sorting of the primitive-cell
pairs (Figure 1). Under the assumption that the number of cells
overlapped by each triangle can be bounded by a constant, all parts
of the algorithm have linear work complexity. We chose to use
radix sort because it is well suited for the data we have, it also has
linear work complexity, and there exists a fast and scalable GPU
implementation [Sengupta et al. 2007]. Sorting on the device alle-
viates the need for expensive data transfers. The only information
we must communicate to the CPU during construction is the size of
the references array so that we can allocate it.

An important advantage of our algorithm is that there are no write
conflicts, and hence, no atomic synchronization is required through-
out the build. This implies that the performance of the construction
algorithm depends only on the number of primitive references that
are inserted in the grid, and not on the primitive distribution in the
scene. In fact, as discussed in Section 3.2.3, we use an atomic oper-
ation on shared memory when we write output pairs. This however
is neither necessary (can be done efficiently via prefix sum), nor
performance critical since we require a single atomic operation per
primitive and not per primitive insertion in a cell.

2



To appear in the High Performance Graphics 2009 conference proceedings

Scene Thai Statue Soda Hall Conference Dragon Sponza Ruins
Default 325× 547× 280 262× 274× 150 210× 133× 50 104× 147× 65 116× 55× 52 53× 69× 52
Cost-Based 313× 487× 281 256× 268× 164 164× 110× 50 137× 105× 71 115× 67× 63 60× 69× 59

Table 1: Grid resolutions computed via heuristic (Default) and cost-based approach (Cost-Based). Instead of trying to make the grid cells
as close to a cube as possible, one can try to find a resolution that minimizes the expected cost for tracing a random ray trough the grid.

1

1

1

2

9

3.2

1

5.7

11

32

17

7.5

17

98

213

1

0.8

1.3

7

13

1.7

2

2.1

13

13

0% 20% 40% 60% 80% 100%

Fairy

Bunny/Dragon

Conference

Soda Hall

Thai Statue

Count Cell-Prim Pairs Write Cell-Prim Pairs Radix Sort

Extract Cell Ranges Bind to Texture

Figure 1: Times for the different stages of the build algorithm in
milliseconds. We also include the time needed to bind the grid cells
to a 3D texture.

The memory requirements for the grid and its construction can be-
come a concern when dealing with very large models. Our method
requires additional (but temporary) memory for storing primitive-
cell pairs instead of only primitives. We additionally need a second
array of pairs during sorting. After the sort stage we extract the
primitive references from the sorted array and free the additional
space. The main memory bottleneck is the space for storing the
grid cells. Each of them is 8 bytes large and we also store empty
cells. Despite the relatively large memory footprint, we were able
to construct grids for all models that we tested, including the Thai
Statue which has 10 million triangles. We discuss a memory issue
that we had with this model in the results section.

Even if there is not enough memory for the grid cells, one can mod-
ify the algorithm to construct the acceleration structure incremen-
tally. We have not implemented this since the size of the grids and
the added memory transfers to the CPU and back will most likely
result in build times of more than a second.

3.5 Grid Resolution

An important part of the building process is the choice of the grid
resolution. This is the only factor one can vary in order to influence
the quality of the structure for ray tracing. Sparser grids cannot
eliminate as many intersection candidates but a higher resolution
results in bigger cost for traversal. The resolution is typically cho-
sen as:

Rx = dx
3

√
λN

V
,Ry = dy

3

√
λN

V
,Rz = dz

3

√
λN

V
(1)

where ~d is the size of the diagonal and V is the volume of the
scene’s bounding box. N is the number of primitives, and λ is a

user-defined constant called grid density [Devillers 1988; Jevans
and Wyvill 1989]. Like Wald et al. [2006], we set the density to 5
in our tests. A more extensive study on good choices of grid density
is done by Ize et al. [2007]. In the following we describe another
approach to choosing resolution of uniform grids.

MacDonald and Booth [1990] introduced the Surface Area Metric
for measuring the expected cost of a spatial structure for ray tracing.
Given the cost for traversing a node of the structure Ct and the
cost for testing a primitive for intersection Ci, the expected cost for
tracing a ray is

Ce = Ct

∑
n∈Nodes

Pr(n) + Ci

∑
l∈Leaves

Pr(l)Prim(l) (2)

Pr(n) and Pr(l) are the probabilities with which a random ray
will intersect the given node, Prim(l) is the number of primitive
stored in the leaf l. In the case of grids, since all cells are regarded
as leaves and have the same surface area (i.e. same intersection
probability), Equation 2 simplifies to

Ce(G) = CtNc + Ci
SA(c)

SA(G)
Npr (3)

where SA(c) and SA(G) are the surface areas of a cell and the
grid’s bounding box,Npr is the number of primitive references that
exist in the grid, and Nc is the expected number of grid cells inter-
sected by a random ray. The surface areas of a cell and the grid can
be computed in constant time, and Nc can be bounded by the sum
of the number of cells in each dimension. The only non-trivial part
for computing the expected cost is counting the number of prim-
itive references in the grid. Since we were able to estimate this
number relatively fast (Algorithm 1, Line 5), we tried to find the
best grid resolution for several test scenes. We empirically found
that Ct = 1.5 and Ci = 8.5 work well for our rendering algorithm
and used Equation 1 to have an initial estimate ~r. We exhaustively
tested all possible grid resolutions in the range

(
3
4
~r; 5

4
~r
)
.

While the resulting grids (Table 1) improved rendering performance
for our ray tracer, the differences were very small both for primary
rays and for path tracing of diffuse surfaces. For example the aver-
age number of intersection tests per ray for Sponza and Ruins was
reduced by up to 2 which is around 10%. Also the times for cost
estimation allowed computing the cost-based resolutions only in a
preprocessing stage of the algorithm. Unless noted, we used the
default grid resolutions for all tests.

4 Results

We implemented our construction algorithm as a part of a GPU ray
tracer in the CUDA programming language. All tests were per-
formed on a machine with an NVIDIA Geforce 280 GTX with 1
GB memory and a Core 2 Quad processor running at 2.66 GHz. The
only computationally demanding tasks for which we use the CPU
are key frame interpolation for dynamic scenes and data transfers.

3



To appear in the High Performance Graphics 2009 conference proceedings

Figure 2: Some of our test scenes, from left to right - Fairy Forest, Dragon, Bunny/Dragon, and Thai Statue. We can render them at 3, 14, 7
and 5 fps with simple shading in a 1024 × 1024 window and can construct grids in 24, 16, 13 and 280 milliseconds on a GTX280. Frame
rate for Fairy Forest and Bunny/Dragon includes rebuild of the grid.

Scene Tris Refs Resolution Time
Thai Statue 10M 19M 325× 547× 280 417
Thai Statue 10M 14.8M 192× 324× 168 280
Soda Hall 2.2M 6.7M 262× 274× 150 130
Conference 284K 1.1M 210× 133× 50 27
Dragon 180K 0.7M 104× 147× 65 16
Fairy Forest 174K 1.1M 150× 38× 150 24
Sponza 60K 490K 116× 55× 52 13
Ruins 53K 310K 53× 69× 52 10

Table 2: Build statistics for test scenes of different sizes. “Refs”
means the number of triangle references stored in the grid after
construction. Times are in milliseconds and are measured on a
GTX280.

4.1 Construction

From the results in Table 2 one sees that the performance of the
construction algorithm scales with the number of references in the
grid. The reported times are for the runtime of the construction al-
gorithm and include all overheads for memory allocation and deal-
location, the computation of the grid resolution, and a texture bind
to a 3D texture, but do not include the time for the initial upload of
the scene to the GPU. When rendering dynamic scenes, we use a
separate CUDA stream for uploading geometry for the next frame
while rendering the current one. We were able to completely hide
the data transfer by the computation for the previous frame for all
tested animations. Note that we also update the bounding box of
the scene together with the data upload.

The time to build the full resolution grid for the Thai Statue
(325 × 547 × 280) does not include 198 milliseconds for copy-
ing the grid cells to the CPU and then back to a GPU-texture. We
were not able to perform the texture bind directly, because this in-
volves duplication of the grid cells (nearly 400 MB), for which the
GPU-memory was not sufficient. Note that the copy and the texture
bind are only necessary if the rendering must be done on the device
and the grid cells must be stored in a three dimensional texture. We
include the build time for the full resolution and the sparser grid
in Table 2 for comparison. This resolution allows us to achieve
reasonable rendering performance - between 3 and 5 frames per
second. Ize et al. [2006] report build times of 136 and 21 millisec-
onds for the Thai Statue (192× 324× 168) and the Conference on
8 Dual Core Opterons running at 2.4 GHz with bandwidth of 6.4
GB/s each.

Model Grid LBVH H BVH Grid
(Triangles) Dual Xeon GTX280 GTX280 GTX280

Fairy 68ms 10.3ms 124ms 24ms
(174K) 3.9 fps 1.8 fps 11.6 fps 3.5 fps

Bunny/Dragon - 17ms 66ms 13ms
(252K) - 7.3 fps 7.6 fps 7.7 fps

Conference 89ms 19ms 105ms 27ms
(284K) 4.0 fps 6.7 fps 22.9 fps 7.0 fps

Soda Hall - 66ms 445ms 130ms
(2.2M) 8.0 fps 3.0 fps 20.7 fps 6.3 fps

Table 3: Build times and frame rate (excluding build time) for pri-
mary rays and simple shading for a 1024 × 1024 image. We com-
pare performance of Wald’s CPU implementation [2006] running
on a dual 3.2 GHz Intel Xeon, Günther’s packet algorithm [2007]
with LBVH and Hybrid BVH (H BVH) as implemented by Lauter-
bach et al. [2009] to our implementation. See Table 2 for grid
resolutions. The grid resolution of the Bunny/Dragon varies with
the scene bounding box.

4.2 Rendering

Our ray tracing implementation does not make explicit use of pack-
ets, frusta, or mailboxing like Wald’s [Wald et al. 2006]. We used
the traversal algorithm proposed by Amanatides and Woo [1987]
without any significant modifications, and the ray-triangle intersec-
tion algorithm by Möller and Trumbore [1997]. We store the grid
cells in a 3D texture in order to make better use of the texture cache
during traversal. We represent a triangle as three indices to a global
vertex array. We also store the triangles and the vertex array in tex-
tures since this improved the rendering time. In our tests we mea-
sure performance for primary rays and simple shading (Figure 2
and 3 and Table 3).

As illustrated in Table 3, the performance we achieve for primary
rays does not compare well to the CPU algorithm by Wald et al.
[2006] that uses SIMD packets and frusta. Their ray tracer can
exploit the high coherency of primary rays, which makes it superior
to our naı̈ve GPU implementation. Since the grids constructed by
our algorithm have at least the same quality1 as those used by Wald
et al. [2006], the presented construction algorithm can be used to
speed up their ray tracer implementation. For a hybrid GPU-CPU
implementation the texture bind should be replaced by two memory
copies to the host - one for the gird cells and one for the array of
triangle references. Together, these were never more than twice
slower than the texture bind itself.

1The grid quality can be better, because of the more precise test for
triangle-cell overlap that we perform.

4



To appear in the High Performance Graphics 2009 conference proceedings

Figure 3: Some of our test scenes, from left to right - Ruins, Sponza, Conference, and Soda Hall. We can render them at 21, 13, 7 and 6 fps
with simple shading in a 1024× 1024 window and can construct grids in 10, 13, 27 and 130 milliseconds on a GTX280.

Both our building and rendering performance are comparable to
the results of Lauterbach et al. in [Lauterbach et al. 2009] for their
LBVH. The LBVH has an advantage in terms construction time,
but the rendering performance suggests that it does not offer better
acceleration for ray tracing than grids. The quality disadvantage is
bigger for the relatively large Soda Hall model.

The Hybrid BVH [Lauterbach et al. 2009] offers fast construction
times and between three and four times better rendering perfor-
mance than our implementation of grids. Nevertheless the better
construction time allows us to rebuild the structure and trace a sig-
nificant amount of rays before the overall performance becomes
worse.

Please note that the disadvantage in terms of rendering times that
our implementation has is partly due to the fact that the alternative
approaches make explicit use of ray-packets. On the other hand,
our approach is less sensitive to ray coherency.

Despite their disadvantages grids can provide an alternative to hi-
erarchical acceleration structures if the primitive distribution is to
some extent even, or in real-time applications in which the num-
ber of rays that have to be traced is not very large. While high-
quality SAH-based acceleration structures enable faster ray tracing,
their construction time is a performance bottleneck in dynamic ap-
plications. The fast build times of grids are almost negligible and
shift the computational demand entirely toward tracing rays, a task
which is easier to parallelize.

5 Conclusion and Future Work

We presented a robust and scalable parallel algorithm for construct-
ing grids over a scene of geometric primitives. Because we reduce
the problem to the sorting of primitive-cell pairs, the performance
does not depend on the triangle distribution in the scene. When
used for ray tracing dynamic scenes, the fast construction times al-
low us to shift the computational effort almost entirely toward the
rendering process. We also showed a method for choosing the res-
olution of the grid in a way that minimizes the expected cost for
tracing a ray. Unfortunately this could not solve the problems that
grids have with triangle distributions.

An interesting continuation of this work would be to investigate the
use of the construction algorithm for different primitive types. We
concentrated on the use of grids for ray tracing, but there are other
applications that can benefit from the construction algorithm. We
want to further research acceleration structures for ray tracing that
are fast to build, but maintain high quality even for scenes with non-
uniform triangle distributions. For example, it might be efficient to
use the data produced after the sorting stage for constructing an
octree. To this end only the last step of the algorithm should be
replaced by a kernel that builds the tree on top of the sorted cells.

It should also be possible to reduce the construction of regular ac-
celeration structures such as hierarchical or multilevel grids to a
sorting problem.

Acknowledgements

The authors would like to thank Felix Klein for modelling the Ruins
model. The models of the Dragon and the Thai Statue are from The
Stanford 3D Scanning Repository, the Bunny/Dragon and the Fairy
Forest Animation are from The Utah 3D Animation Repository. We
would like to thank the anonymous reviewers and Mike Phillips for
the suggestions which helped to improve the quality of this paper.

References

AKENINE-MÖLLER, T. 2001. Fast 3d triangle-box overlap testing.
Journal of Graphics Tools 6, 29–33.

AMANATIDES, J., AND WOO, A. 1987. A fast voxel traversal
algorithm for ray tracing. In Eurographics ’87. Elsevier Science
Publishers, Amsterdam, North-Holland, 3–10.

DEVILLERS, O. 1988. Methodes doptimisation du tracé de rayons.
PhD thesis, Université de Paris-Sud.

EISEMANN, E., AND DÉCORET, X. 2006. Fast scene voxelization
and applications. In I3D ’06: Proceedings of the 2006 sympo-
sium on Interactive 3D graphics and games, ACM, New York,
NY, USA, 71–78.

ES, A., AND İŞLER, V. 2007. Accelerated regular grid traver-
sals using extended anisotropic chessboard distance fields on a
parallel stream processor. J. Parallel Distrib. Comput. 67, 11,
1201–1217.

GREEN, S., 2008. Particles demo. NVIDIA CUDA SDK v2.2
http://www.nvidia.com/object/cuda sdks.html.

GÜNTHER, J., POPOV, S., SEIDEL, H.-P., AND SLUSALLEK, P.
2007. Realtime ray tracing on GPU with BVH-based packet
traversal. Symposium on Interactive Ray Tracing, 113–118.

IVSON, P., DUARTE, L., AND CELES, W. 2009. Gpu-accelerated
uniform grid construction for ray tracing dynamic scenes. Mas-
ter’s Thesis Results 14/09, PUC-Rio, June.

IZE, T., WALD, I., ROBERTSON, C., AND PARKER, S. 2006. An
evaluation of parallel grid construction for ray tracing dynamic
scenes. Symposium on Interactive Ray Tracing, 47–55.

IZE, T., SHIRLEY, P., AND PARKER, S. 2007. Grid creation
strategies for efficient ray tracing. Symposium on Interactive Ray
Tracing (Sept.), 27–32.

5



To appear in the High Performance Graphics 2009 conference proceedings

JEVANS, D., AND WYVILL, B. 1989. Adaptive voxel subdivision
for ray tracing. In Proceedings of Graphics Interface ’89, Cana-
dian Information Processing Society, Toronto, Ontario, 164–72.

LAGAE, A., AND DUTRÉ, P. 2008. Compact, fast and robust
grids for ray tracing. Computer Graphics Forum (Proceedings
of the 19th Eurographics Symposium on Rendering) 27, 4 (June),
1235–1244.

LAUTERBACH, C., GARLAND, M., SENGUPTA, S., LUEBKE, D.,
AND MANOCHA, D. 2009. Fast BVH construction on GPUs. In
Proceedings of Eurographics.

MACDONALD, J. D., AND BOOTH, K. S. 1990. Heuristics for ray
tracing using space subdivision. Visual Computer 6, 6, 153–65.

MÖLLER, T., AND TRUMBORE, B. 1997. Fast, minimum storage
ray-triangle intersection. Journal of Graphics Tools 2, 1, 21–28.

NICKOLLS, J., BUCK, I., GARLAND, M., AND SKARDON, K.
2008. Scalable parallel programming with CUDA. In Queue 6.
ACM Press, 2, 40–53.

PATIDAR, S., AND NARAYANAN, P. 2008. Ray casting deformable
models on the GPU. Sixth Indian Conference on Computer Vi-
sion, Graphics & Image Processing, 481–488.

POPOV, S., GÜNTHER, J., SEIDEL, H.-P., AND SLUSALLEK, P.
2007. Stackless kd-tree traversal for high performance GPU ray
tracing. Computer Graphics Forum 26, 3 (Sept.).

PURCELL, T. J., BUCK, I., MARK, W. R., AND HANRAHAN, P.
2002. Ray tracing on programmable graphics hardware. ACM
Transactions on Graphics 21, 3 (July), 703–712. ISSN 0730-
0301 (Proceedings of ACM SIGGRAPH 2002).

SENGUPTA, S., HARRIS, M., ZHANG, Y., AND OWENS, J. D.
2007. Scan primitives for gpu computing. In GH ’07: Pro-
ceedings of the 22nd ACM SIGGRAPH/EUROGRAPHICS sym-
posium on Graphics hardware, Eurographics Association, Aire-
la-Ville, Switzerland, Switzerland, 97–106.

WALD, I., IZE, T., KENSLER, A., KNOLL, A., AND PARKER,
S. G. 2006. Ray tracing animated scenes using coherent grid
traversal. ACM Transactions on Graphics 25, 3, 485–493.

ZHOU, K., HOU, Q., WANG, R., AND GUO, B. 2008. Real-time
kd-tree construction on graphics hardware. In SIGGRAPH Asia
’08: ACM SIGGRAPH Asia 2008 papers, ACM, New York, NY,
USA, 1–11.

6


