
EUROGRAPHICS 2017 / L. Barthe and B. Benes
(Guest Editors)

Volume 36 (2017), Number 2

GPU Ray Tracing using Irregular Grids

Arsène Pérard-Gayot1, Javor Kalojanov1, Philipp Slusallek1,2

1Saarland University & Intel VCI, Germany
2German Research Center for Artificial Intelligence, Germany

Abstract
We present a spatial index structure to accelerate ray tracing on GPUs. It is a flat, non-hierarchical spatial subdivision of
the scene into axis aligned cells of varying size. In order to construct it, we first nest an octree into each cell of a uniform
grid. We then apply two optimization passes to increase ray traversal performance: First, we reduce the expected cost for
ray traversal by merging cells together. This adapts the structure to complex primitive distributions, solving the "teapot in a
stadium" problem. Second, we decouple the cell boundaries used during traversal for rays entering and exiting a given cell.
This allows us to extend the exiting boundaries over adjacent cells that are either empty or do not contain additional primitives.
Now, exiting rays can skip empty space and avoid repeating intersection tests. Finally, we demonstrate that in addition to the
fast ray traversal performance, the structure can be rebuilt efficiently in parallel, allowing for ray tracing dynamic scenes.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Raytracing

1. Introduction

Today’s high performance ray tracers rely on high quality accelera-
tion structures for efficient ray traversal and fast rendering times.
A number of types of these structures have been explored and
adapted to various application scenarios, considering aspects such
as hardware architecture, type of rendering applications (e.g. of-
fline, interactive), or type of scenes (e.g. static, deformable, dy-
namic). For example, state of the art ray traversal performance for
static scenes on GPUs [AL09] can be obtained using spatial bound-
ing volume hierarchies (SBVHs) [SFD09, PGDS09]. For dynamic
scenes, different types of bounding volume hierarchies (BVHs) like
LBVHs [LGS∗09] and HLBVHs [PL10] are preferred due to their
fast build times, which allow per-frame rebuild of the structure even
for very large scenes.

In this paper, we demonstrate that efficient ray traversal on mod-
ern GPUs is also possible with a new type of acceleration structure,
which combines characteristics of hierarchical grids and bounding
volume hierarchies. Similar to the standard construction algorithms
for LBVHs and two-level grids, we initially subdivide the scene
into small cells. To make this initial stage of the construction ef-
ficient, we use a two-level approach. We build a coarse uniform
grid for the top level and then subdivide each of its cells indepen-
dently and adaptively, based on the local primitive density. The re-
sulting structure was first proposed by Jevans and Wyvill [JW89].
Similar to previous work on two-level grids [KBS11], this accel-
eration structure is very fast to build, but offers limited traversal
performance—the main problem our work addresses.

We provide a two-stage algorithm to transform the initial accel-
eration structure into an irregular grid—a non-hierarchical spatial
subdivision into axis aligned bounding boxes of varying size. We
start by iteratively merging the leaf cells of the two-level hierar-
chy, thereby optimizing the quality of the structure w.r.t. to the Sur-
face Area Heuristic (SAH) [MB90, Hav01]. This adapts the spatial
subdivision to the distribution of primitives in the scene, without
constructing a deep hierarchy. We then further reduce the amount
of work during ray tracing by decoupling the cell boundaries used
for entering and exiting rays. This makes it possible to use differ-
ent, extended cell boundaries for outgoing rays. These new exiting
cell boundaries can be placed beyond neighbors that contain only a
subset of the primitives inside it. Rays that have entered a cell can
then skip overlapped neighbors and thus avoid unnecessary traver-
sal steps and intersection tests.

Our evaluation indicates that, when optimized for static geom-
etry, our acceleration structure can often provide traversal perfor-
mance superior to standard SBVHs. Without modifying the build
algorithm, we can trade off quality for faster build times, enabling
ray-tracing dynamic scenes with complete per-frame rebuild of the
structure. In this scenario, our method achieves interactive perfor-
mance without substantially reducing the ray budget per frame.
The trade-off between build times and acceleration structure quality
can be manually or automatically controlled through the maximum
grid density—an intuitive parameter used for uniform and two-level
grid construction. This enables support for both static and dynamic
scenes with the same construction algorithm.

Our approach can also be viewed as an efficient strategy for

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

Pérard-Gayot et al. / GPU Ray Tracing using Irregular Grids

empty space skipping in uniform or hierarchical grids. The regular-
ity of these acceleration structures forces unnecessary subdivision
of empty regions, which usually creates a memory latency bottle-
neck during traversal. Both the merge step and expansion phase of
our construction algorithm address this issue by reducing the num-
ber of traversal steps and intersection tests. As a result, the traversal
performance is no longer memory latency limited for coherent rays,
as opposed to uniform and two-level grids.

2. Background

Acceleration structures for ray tracing have been researched inten-
sively and played an important role for the increased popularity of
rendering solutions based on ray tracing. The purpose of an acceler-
ation structure (a.k.a. spatial index structure) is to spatially organize
(sort) the geometric primitives in a scene and thus eliminate most
of them as intersection candidates for a given ray. To this end, each
ray is traversed within the structure, quickly identifying the subset
of intersected cells (or nodes). Only the primitives contained inside
these cells are tested for intersection and all the others can be ig-
nored. Hence, a good acceleration structure for ray tracing should
eliminate a large number of intersection candidates, while at the
same time providing fast traversal and, in some applications, fast
build times.

Some spatial index structures variants have received spe-
cial attention. Most notably, hierarchical structures such as kd-
trees [RSH05, WH06, PGSS06, HMS06] and bounding volume hi-
erarchies [WMG∗07, Tsa09, PGDS09, SFD09, AL09] are able to
provide the best traversal performance on modern hardware. They
offer computationally inexpensive traversal and, being hierarchical
subdivisions, can adapt to the local size and density of primitives.
More importantly, the expected cost of traversing a random ray
trough the structure is minimized using the Surface Area Heuristic
[MB90, Hav01] when subdividing nodes, greatly improving perfor-
mance compared to a naïvely constructed tree.

A common drawback of high quality acceleration struc-
tures optimized according to the SAH are the long build
times, which limit their use to ray tracing static scenes.
To address this, researchers have tried various build algo-
rithms [WMG∗07, Wal10, GPBG11, KA13] and variations in the
structure [WMS06, WK06, LGS∗09, PL10] in order to trade off
some of the traversal performance for faster build or update times.
It is important to note that these previous approaches require fun-
damentally different construction algorithms to achieve fast build
times. Our technique differs as it allows for controlling the quality
of the structure with two user-defined parameters.

A different approach to optimizing the trade off between
build and traversal times is to consider regular (non-SAH)
structures with fast, parallel construction such as uniform
grids [WIK∗06, IWRP06, KS09], hierarchical grids [KBS11], or
LBVHs [LGS∗09, PL10]. These methods rely on a more regu-
lar space (or primitive) subdivision, which limits traversal perfor-
mance, especially in scenes with complex primitive distributions
(the "teapot in a stadium problem"). However, their fast construc-
tion makes them practical for dynamic scenes with rapidly chang-
ing geometry. Similar to the core idea of LBVHs we start with a

2 3

14

1

5
6

16
4

13

7

8 9
10

11

12 15

1 1

1 1

2 2 2

22 2 2

3 3 3

3 3 3
14

4

4 4

4 416 16

1616

16

16

6 6

66

5 5

7 7

8 8 9 10

1011 11 11

12 12 12 12

12121212

Cells

Voxel MapIrregular Grid

1 2 3 4 5 6 7 8 1610 11 12 13 14 15

13

13 13

15 13

9

References

Figure 1: Top: Our structure subdivides space into irregular cells
(left), and we store a two-level voxel map to link voxels to their
respective cells (right). Bottom two rows: the cells and the corre-
sponding ranges of references.

dense regular subdivision of the scene into cells, which are consec-
utively merged into larger cells, which offer better traversal perfor-
mance.

Empty space skipping methods address the inability of regular
spatial subdivisions, e.g. uniform grids, to adapt to the local prim-
itive density. Some solutions [CS94, EI07] are based on distance
fields: The number of adjacent empty cells that can be skipped with
a single traversal step is stored alongside each cell. The merge and
expansion steps of our method can be seen as a generalization of the
approach by Devillers [Dev89], which uses bounding boxes to en-
close large regions of empty space. The difference is that we do not
restrict macro regions to empty space, but instead base our merging
strategy on the SAH and apply it to a fine-grained two-level initial
subdivision, which results in several times faster traversal times.

Our data structure and traversal algorithm share some similari-
ties with rope trees [PGSS07]. Since advancing to the next bound-
ing box along a given ray is non-trivial, we store a map from fine
resolution voxels to the cells of the structure. This resembles the
idea of Popov et al. [PGSS07] to store pointers to the neighbors
inside kd-tree nodes for stackless traversal.

3. Data Structure

Our acceleration structure (see Figure 1) is an irregular spatial sub-
division into axis-aligned cells. These cells contain indices into
an array of primitive references. Each cell has to be aligned on a
virtual base grid, but the size of individual cells is otherwise un-
restricted. This allows for adapting the structure to non-uniform
primitive distributions (i.e. solving the "teapot in a stadium" prob-
lem), and makes empty space skipping efficient. On the other hand,
this property complicates traversal, since neighboring cells are no

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

Pérard-Gayot et al. / GPU Ray Tracing using Irregular Grids

longer located trivially with respect to each other. We solve this
by computing and storing a map between base grid voxels and the
cells they belong to. As illustrated in Figure 1, an irregular grid is
composed of:

• A voxel map E : N3 −→ N, which links the virtual base grid
voxels to the cells of the structure,
• An array of cells, containing for each cell the associated bound-

ing box and range of references,
• An array of references, pointing to the array of primitives.

Since using a uniform grid would require to store N3 values for
the voxel map, we use a substantially more efficient two-level hier-
archical grid. This allows a fast, stackless traversal and an efficient
construction. To summarize, our structure is the combination of a
set of axis-aligned cells and a two-level grid—the voxel map—that
contains the connectivity information.

4. Parallel Construction

Our construction algorithm consists of three phases: an initializa-
tion, a merge step, and a cell expansion step. The initialization step
subdivides the scene into small voxels. This is done using a two-
level strategy that allows for adapting the voxel resolution to the
local primitive density. We then merge cells together in order to
optimize the overall SAH cost of the structure (see Figure 2). In
the expansion step, cell bounding boxes can be further extended in
order to skip some cells during traversal (see Figure 3).

4.1. Initialization

In the initialization step, we generate the initial cells of the struc-
ture, the voxel map, and the array of references. Because the quality
of the acceleration structure depends on the resolution of the vox-
elization, it is critical that this initialization subdivides the scene
adaptively.

Building the cells: First, we build a coarse top-level uniform grid.
The resolution of this grid is computed according to a commonly
used heuristic [CWVB83]:

Rx = dx
3

√
λ1N
V

, Ry = dy
3

√
λ1N
V

, Rz = dz
3

√
λ1N
V

(1)

The variables λ1, V , N and d correspond to the top-level density,
volume, number of primitives, and bounding box of the scene.
Once the top-level grid is constructed, we build an octree in each of
its cells. The depth of one octree is derived from the same formula,
by using a different density λ2 common to all cells and substituting
V , N and d by the volume, number of primitives, and bounding box
of the corresponding cell. The depth D for a given octree is then
simply the resulting resolution rounded to the next power of two:

D = dlog2(max(Rx,Ry,Rz))e

The granularity of our two-level subdivision is hence completely
controlled by λ1 and λ2, the top- and second-level resolutions,
exactly as in [KBS11]. Likewise, both levels use sorting to find
which primitives lie in each cell (each level using exactly one

sort pass, independently of the top-level resolution or the octree
depths). This allows for fast build times, and more importantly,
an even work distribution regardless of the primitive distribution.
However, the octree construction differs from the grid construc-
tion in the way the primitive references are generated. In the oc-
tree construction, we encode a primitive reference as a triplet
(top-level cell ID,octree cell ID,primitive ID), instead of a pair as
in [KBS11]. The references are split in several passes: Each pass
splits every reference until the maximum depth for the correspond-
ing top-level cell is reached. Splitting a reference consists in testing
the primitive against the 8 children of the octree cell and emitting
a new reference only if there is an intersection. Therefore, we need
to perform as many passes as the maximum octree depth to emit
all the references, instead of only two for a two-level grid. In large
scenes, this additional cost is compensated by the reduced amount
of primitive-cell intersection tests.

The choice of an octree for the second level is motivated by the
fact that Equation 1 favors subdivision such that each top-level cell
is almost a cube. Consequently, in a given cell, the second-level
resolution computed from Equation 1 is usually equal on each axis
(in our test scenes, this is true for more than 95% of the non-empty
cells).

The next step is to compute the resolution of the virtual base
grid: We obtain it naturally by multiplying the top-level resolution
by the maximum octree resolution. Each cell is, by design of our
construction algorithm, aligned on this virtual grid. We would like
to stress that this grid is virtual: We do not store its cells, but we
use it to index into the voxel map.

Building the voxel map: Since the voxel map transforms a voxel
position on the virtual base grid (which can reach extremely high
resolutions) to an index in the array of cells, it is impractical to
store it as a uniform grid. We therefore use a two-level grid with
the same top- and second-level resolutions as the one used for the
cells:

• For each top-level voxel: 4 bits for the logarithm of the resolution
D and 28 bits for the index to the first cell of the second level.

• For each second-level voxel: the corresponding index into the
cell array.

These two levels are stored linearly into one array. Using only 4 bits
for the logarithm of the resolution allows us to reach a sub-level res-
olution of 224−1 = 32768. Previous works use 24 bits and restrict
the maximum resolution in each dimension to 255 [KBS11].

The resulting structure is essentially an adaptive voxelization in-
dexed by a two-level grid (see Figure 2, middle), and can already
be used for traversal. Its performance can be further improved by
merging redundant cells, which is the next step of our construction
algorithm.

4.2. Cell Merging

The second step of our build algorithm consists in merging adja-
cent cells according to the SAH in a way that reduces the expected
traversal cost.

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

Pérard-Gayot et al. / GPU Ray Tracing using Irregular Grids

Figure 2: Construction stages without cell expansion. We initially construct a coarse uniform top-level grid (left). Then, the cells are subdi-
vided into octrees (middle). Finally, the cells from both the top and second level are merged in order to minimize the SAH cost (right).

The expected cost for traversing a cell equals the probability of
a ray hitting it times the cost for testing the triangles (or primitives)
it contains. We can compute the costs for a pair of cells if they are
adjacent and if the union of their bounding boxes is itself a box. A
simple criterion to decide when to merge cells is to test if the sum
of the cost of two cells taken individually is greater than the cost of
the resulting merged cell. By iteratively merging cells according to
this criterion, we can greedily improve the overall traversal cost of
the structure.

More formally: Let a cell c be defined by the set of triangles T it
contains and its bounding box B, and let SA(·) be the surface area
of ·. Furthermore, let Ct be the cost for traversing an empty cell of
the acceleration structure, and Ci the cost for testing a triangle for
intersection. The resulting cost functions Ccell for one individual
cell and Cmerge for two merged cells are then proportional to:

Ccell(c)∝ (Ci|T |+Ct) SA(B)
Cmerge(c1,c2)∝ (Ci|T1∪T2|+Ct) SA(B1∪B2)

We determined experimentally that setting Ct = 1 and Ci = 1 gives
the best performance with our traversal algorithm, and we use these
values for our tests. Also, for simplicity, we omit a division by the
surface area of the bounding box of the scene in both cases.

During the whole construction, in order to merge cells and their
contained primitives efficiently, we keep the primitive references
sorted by cell (globally), and, within each cell, by triangle refer-
ence. This allows for computing the union in one linear pass sim-
ilar to the merge step in merge sort, except that we discard double
occurrences.

We perform merge passes along a single axis (x, y or z), which
we alternate in a round-robin fashion. Each pass is executed as fol-
lows:

1. For each cell, in parallel, if a merge is possible with the neigh-
bor on the axis, we compute the cost of merging with it. If the
sum of the individual costs of the cell and its neighbor is greater
than the cost of merging them together, then the cell becomes a
merge candidate. Merge candidates can form chains, which we
call merge chains.

2. For every merge chain in parallel, we mark the cells at odd posi-
tions as residue (we only perform pairwise merges). The length
of the chain can therefore be reduced by half in each pass.

3. For each cell, in parallel,

• If the cell is a merge candidate and is not residual, a new cell
containing the merged result is created and the references to
the primitives are updated.

• If the cell is not a merge candidate, it is kept without change.
• If the cell is residual, it is naturally removed.

4. The entries of the voxel map pointing to removed cells are up-
dated to their respective new (and larger) cells.

This merging procedure is repeated (alternating the three axes)
until the number of merged cells is small enough. If Nbe f ore is the
number of cells before merging and Na f ter is the number of cells
after merging, the termination criterion is:

Na f ter ≥ αNbe f ore with α ∈ [0,1]

When α is 1, the merging procedure will loop until no more merge
is possible, or none of the remaining possibilities improves the
SAH cost of the structure. When α is 0, the merge procedure
will only be executed once. Our experiments show that setting
α = 0.995 reduces the number of iterations while providing close
to optimal performance (w.r.t. α = 1). The number of merged cells
varied from 15 to 70%, depending mainly on the scene complexity
and amount of empty space.

4.3. Cell Expansion

After the merge step, empty regions of the scene become cheap to
traverse, and, similarly to most other acceleration structures, the
remaining expensive areas in a viewport are at object boundaries.
These parts of the scene are difficult to handle by simply adjust-
ing the density of the spatial subdivision: making the cells smaller
reduces the amount of ray-primitive intersection tests for rays that
travel close to the object boundaries without hitting the object. On
the other hand, the smaller the cells, the more traversal steps are
necessary for rays barely missing the object.

To address this, we take advantage of the fact that entering and
exiting a cell are two decoupled operations: During traversal, we
compute the cell to enter by performing a lookup in the voxel map
at the position where we left the previous cell. However, we com-
pute where a given ray exits a cell by intersecting it with the bound-
ing box of the cell. Hence, increasing the size of the bounding box

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

Pérard-Gayot et al. / GPU Ray Tracing using Irregular Grids

initial bounding box expand in y expand in x

Figure 3: Example expansion of cell bounding boxes. We expand
both empty (bottom figures) and non-empty (top figures) cells, ex-
tending their boundaries along each dimension in turn, one cell at
a time, if the set of contained triangles remains unchanged.

of a cell will allow the ray to exit farther away, skipping neighbor-
ing cells and reducing the number of traversal steps.

In order to preserve traversal correctness, we only expand a cell
if all its neighbors on a given side contain a subset of the primitives
already contained in this cell (see Figure 3). The amount by which
the bounding box is expanded is taken from the smallest neighbor-
ing cell. A single expansion pass consists in repeating this process
for all cells once along x, then y and finally z.

Expansions passes can be performed repeatedly, taking into ac-
count neighbors that are farther away. In Figure 3 for example, the
cell in the top row will benefit from a second expansion pass, which
would increase its size in x and y. Overall, each successful expan-
sion pass can extend the boundaries of a cell over its closest neigh-
bors, and allow an exiting ray to skip up to three traversal steps
(one per dimension). However, we observed that the improvement
in traversal performance gets negligible after only a few iterations.
In our tests, doing more than 3 expansion passes yielded less than
1% in performance compared to only doing 3. Therefore, we opted
for doing 3 expansion passes after merging when rendering static
geometry and a single pass for dynamic scenes.

After expansion based on this criterion, the traversal perfor-
mance increases by 5-20% for our test scenes. One part of the per-
formance increase comes from expanding cells over their empty
neighbors, which reduces the number of traversal steps for empty
space. The remaining benefit is due to extending the boundaries
over non-empty neighbors, which also reduces the number of re-
dundant ray-primitive intersection tests.

Note that cell expansion makes discovering neighbors a non-
trivial task, which is why we only perform it after merging cells.
Merging cells beforehand also makes cell expansion faster by re-
ducing the number of cells to expand.

5. Traversal

The core idea behind the traversal algorithm is the same as the stan-
dard 3D-DDA algorithm [AW87], except that we recompute the in-

after merging after expansioninitial grid

Figure 4: Traversal steps using the initial grid, cell merging, and
cell merging with expansion. At each intersection with a cell (red
dot) the next virtual base grid voxel (gray) is computed and the
corresponding cell is looked up.

crement along the ray at each step. The virtual base grid—which,
as explained in Section 4, is not stored—serves as a support for
the traversal: The current voxel position moves on this grid and the
voxel map is used to link this position to the current cell.

The algorithm can be summarized as follows:

1. We locate the origin of the ray on the virtual base grid.
2. We then repeatedly:

a. Look up the cell index at the current virtual grid voxel posi-
tion using the voxel map. This only requires two dependent
memory lookups (one for the top level, and one for the sec-
ond level).

b. Intersect the primitives contained in the cell, if any.
c. Intersect the bounding box of the cell to compute the in-

crement along the ray. In practice, we only need the exit
distance, so it is enough to intersect only the three farthest
bounding box planes with respect to the ray direction.

d. Find the next virtual base grid position based on the exit dis-
tance.

e. If the next voxel position is outside the grid or if an intersec-
tion was found, the traversal stops.

As discussed in the following section, the traversal performance
we obtain using our acceleration structure is comparable to SBVHs
and superior to two-level grids. The performance difference with
two-level grids is especially large for rays traveling long distances
trough empty space or traversing areas close to complex objects.
Additionally, our measurements show that the traversal of coherent
rays inside an irregular grid is not memory latency limited as is the
case with two-level grids and to some extent with SBVHs [Gut14].
This property is one of the main factors contributing to the traversal
performance on graphics hardware.

Floating point precision is a common issue with grid traversal
algorithms, and ours is no exception. In order to prevent the next
voxel position to fall in a cell that has already been traversed, we
keep the current voxel position from the previous step, and we make
sure that the next voxel position is further along the ray. In practice,
this only amounts to a max operation between the next voxel coor-
dinate and the previous one along axes on which the ray direction
is positive (and similarly, a min operation for axes on which the ray
direction is negative).

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

Pérard-Gayot et al. / GPU Ray Tracing using Irregular Grids

Sponza Conference Hairball Crown San Miguel
0 %

20 %

40 %

60 %

80 %

100 %

Initial grid Merge Expansion Overhead

Figure 5: Relative cost of each step in the total construction time.
The time spent allocating memory and copying data to the GPU is
considered as overhead.

6. Evaluation

We implemented our method in CUDA 7.0 [NVI07] and evalu-
ated the performance comparing it to up-to-date ray tracers using
SBVHs [ALK12] and two-level grids [KBS11]. The first reference
offers state-of-the-art performance for ray tracing static scenes de-
fined as a triangle soup. For dynamic scenes with per-frame re-
build of the acceleration structure, two-level grids and LBVHs of-
fer similar build times and ray traversal speeds [KBS11]. We com-
pare against two-level grids since they are closely related to our
acceleration structure. We report test results on a GeForce Titan X
(Maxwell), but the relative performance w.r.t. alternative methods
was very similar on a GeForce GTX 970. We did not use third
party implementations in our code, except for the scan and radix
sort provided in the CUB [NVI] library. Please note that we com-
pare performance by tracing the exact same set of rays, and use
the Möller-Trumbore ray-triangle intersector [MT97] with each ray
tracing implementation.

6.1. Construction

In Figure 5, we give a breakdown of the time spent during each
stage of our build algorithm. Because of the reduced amount of
grid cells after the merge step, cell expansion typically takes around
20% of the construction time. While each of the two methods
(merging and expansion) can provide substantial improvement in
the traversal performance (see Table 1), we do not recommend us-
ing expansion only. Without the merging step, the expansion would
have to process too many cells, resulting in very slow build times
and smaller quality improvement.

Memory footprint: Assuming unconstrained build times, the
main limiting factor for the quality of the acceleration structure is
the memory necessary construct a dense voxelization. The finer the
initial subdivision, the more ways to merge the voxels into cells
of the irregular grid. This makes the search space for an optimal
subdivision larger and enables the construction of a structure with

Sponza NT NI MRays/s
SBVH 35 (+0%) 6 (+0%) 409 (+0%)
Initial grid 16 (-54%) 12 (+100%) 454 (+11%)
+ Merge 12 (-66%) 12 (+100%) 511 (+25%)
+ Merge & Exp. 7 (-80%) 11 (+83%) 653 (+60%)

Crown NT NI MRays/s
SBVH 39 (+0%) 11 (+0%) 232 (+0%)
Initial grid 15 (-61%) 18 (+62%) 238 (+2%)
+ Merge 13 (-66%) 18 (+62%) 266 (+14%)
+ Merge & Exp. 11 (-72%) 17 (+59%) 296 (+28%)

San Miguel NT NI MRays/s
SBVH 55 (+0%) 8 (+0%) 227 (+0%)
Initial grid 28 (-49%) 13 (+62%) 206 (-9%)
+ Merge 15 (-72%) 13 (+62%) 241 (+6%)
+ Merge & Exp. 10 (-81%) 13 (+62%) 291 (+28%)

Table 1: Number of traversal steps (NT) and triangle intersections
(NI) per primary ray on average for an SBVH compared to our
structure after each construction phase (with λ1 = 0.12,λ2 = 2.4).

a better expected traversal cost (see Table 2). Our build algorithm
uses more memory than the final structure (between 2.5× and 3×),
because of its massively parallel nature (the merge operation, for in-
stance, does not work in-place). Note that such memory overheads
are also present in the typical construction algorithms for SBVHs
and two-level grids. In practice, however, this limitation did not pre-
vent us from using optimal build parameters for all the scenes used
in this paper. If memory is really a concern, one obvious solution is
to merge the grid in several passes, or decrease the densities.

We show the impact of changing the top-level and second-level
densities on build times and primary ray traversal time for the
crown scene in Figure 6. The results for the remaining scenes are
similar and indicate that the second-level density correlates with the
traversal performance, and that choosing a top-level density that is
lower than the second-level density reduces the build times with-
out affecting the traversal performance significantly. Higher build
times also seem to correlate with faster traversal, until the maxi-
mum performance is reached.

Even though the quality of the irregular grid is influenced by the
choice of initial grid densities (λ1,λ2), our structure is less sensi-
tive to the choice of parameters compared to a two-level grid (see
Table 2). While the two-level grid construction terminates after the
initial subdivision, our method only subdivides the scene to form a
starting guess. In the case of a two-level grid, increasing the grid
density will ultimately cause performance degradation, due to the
increased number of empty cells. Thanks to the merging and expan-
sion passes, we can locally optimize our structure and, for example,
reduce traversal overhead in densely subdivided empty regions of
the scene.

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

Pérard-Gayot et al. / GPU Ray Tracing using Irregular Grids

Build times (s) Traversal (MRay/s) Memory (MB)
Scene #Tris Ours 2L Grid SBVH Ours 2L Grid Ours 2L Grid SBVH

Sponza 262K [0.012, 0.026] 0.007 9 [201, 653] 145 [4, 23] 24 20
Conference 283K [0.016, 0.022] 0.007 7 [182, 597] 77 [4, 12] 27 21
Hairball 2.9M [0.349, 0.893] 0.177 336 [79, 148] 37 [138, 779] 668 413
Crown 3.5M [0.066, 0.203] 0.039 44 [115, 296] 74 [53, 278] 182 241
San Miguel 7.9M [0.162, 0.492] 0.071 95 [97, 291] 63 [107, 565] 323 510

Table 2: Build times, memory, and traversal statistics for grid densities ranging in: λ1 ∈ [0.012,0.12],λ2 ∈ [0.24,2.4]. For the two-level
grid, we select the pair (λ1,λ2) that yields the best traversal performance. The traversal algorithms are tested using primary rays with the
viewpoints in Figure 7. The SBVH build times are measured on a single CPU core.

Scene #Tris

Sponza 262K

Conference 283K

Hairball 2.9M

Crown 3.5M

San Miguel 7.9M

Fig. 7

(a)
(f)

(b)
(g)

(c)
(h)

(d)
(i)

(e)
(j)

Primary
SBVH Ours

409 653 (+60%)
265 473 (+78%)

583 597 (+2%)
523 526 (+1%)

100 148 (+48%)
79 93 (+18%)

232 296 (+28%)
181 191 (+6%)

227 291 (+28%)
157 180 (+15%)

AO
SBVH Ours

270 386 (+43%)
187 234 (+25%)

303 332 (+10%)
326 338 (+4%)

53 69 (+30%)
63 61 (-3%)

108 120 (+11%)
112 125 (+12%)

119 119 (+0%)
125 115 (-8%)

Random
SBVH Ours

166 274 (+65%)

295 312 (+6%)

19 26 (+37%)

221 238 (+8%)

119 160 (+34%)

Table 3: Ray traversal performance in Mrays/s for static scenes on a GeForce Titan X (Maxwell). The top-level density λ1 = 0.12 and
leaf-level density λ2 = 2.4 of the initial grid are identical for all scenes.

1 2

1

2

λ1

λ
2

0

100

200

300

1 2

1

2

λ1

λ
2

2
4
6
8
10

Figure 6: Build times (left) and primary ray traversal times for
a viewport of 1024×1024 (right), in milliseconds, for the crown
scene, depending on the top-level (λ1) and second-level (λ2) densi-
ties.

6.2. Static Scenes

We compare the performance of our traversal algorithm for static
scenes against the SBVH ray traversal implementation of Aila et
al. [ALK12] in Table 3. We would like to thank the authors for pro-
viding the code for their ray tracer, which enables a fair comparison
of traversal performance. A GPL’ed version of our implementation
is also available as supplemental material. The approach by Aila et

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 7: View points used to benchmark the traversal algorithm
on static scenes.

al. is used as a baseline for traversal performance in multiple re-
lated works (e.g. [KA13, ÁSK14, Gut14]). Examining the relative
increase or decrease of performance reported in these works indi-
cate that our method should perform similarly.

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

Pérard-Gayot et al. / GPU Ray Tracing using Irregular Grids

(a) (b)

Mem. Fig. 8(a) Fig. 8(b) Random
SBVH 1.0 GB 200 (+0%) 147 (+0%) 122 (+0%)
Ours (0.12,2.4) 0.84 GB 107 (-46%) 144 (-2%) 176 (+44%)
Ours (0.24,4.8) 1.5 GB 186 (-7%) 204 (+38%) 167 (+37%)

Figure 8: San Miguel inside San Miguel. The table compares the
performance for primary and random rays (in Mrays/s) for an
SBVH and an irregular grid using different initial densities. The
two images represent the amount of computation for traversal and
intersection with (λ1,λ2) = (0.12,2.4). The second viewpoint is in-
side the embedded scene.

The scenes have been chosen to highlight the performance of the
structure for different polygon distributions and various scene sizes.
Although not the largest, the Hairball scene is the most difficult to
traverse using both an irregular grid or an SBVH. This is caused by
the very irregular primitive distribution, especially in the center of
the hairball, where a lot of the geometry is intertwined.

The relative performance compared to the SBVH varies with
the viewpoint, probably due to the different nature of the two ac-
celeration structures: We compare a binary tree and a flat, non-
hierarchical structure. We therefore report results on two represen-
tative (non-trivial) viewpoints for each scene, and present both fa-
vorable and non-favorable situations for our method. Overall, our
impression is that the irregular grid offers faster traversal than the
SBVH for small scenes like Sponza, and for coherent rays regard-
less of the scene size. Even for scenes that remain difficult for our
method such as the Conference, Hairball, or San Miguel, and for
incoherent sets of rays, we achieve comparable and often better
performance.

Parameter selection: Our goal is to estimate the traversal perfor-
mance for static geometry that can be obtained using our accel-
eration structure. Since we compare against an approach using an
SBVH, we select the highest grid densities such that the memory
footprint of both structures are similar. It turns out that the densities
found are close for most scenes, hence we use the same top-level
density λ1 = 0.12 and second-level density λ2 = 2.4 for all tests if
not mentioned otherwise.

The teapot in a stadium: Non-hierarchical spatial subdivision
structures such as uniform grids are considered inferior to hierar-
chical alternatives like kd-trees and BVHs for ray tracing scenes
with non-uniform primitive distributions. This is referred to as the

"teapot in a stadium problem". We constructed an artificial test sce-
nario in order to analyze how well the irregular grid presented here
can handle extreme primitive distributions. We inserted a scaled
down copy of the San Miguel scene inside itself and tested traver-
sal performance for our method and Aila’s ray tracer (see Figure 8).
Using the default grid densities, our method compares favorably
for incoherent rays but we are not able to match the performance
for primary rays for specific viewpoints (Figure 8(a) was the worst
viewpoint for our method). This is easily solved by increasing the
densities λ1 and λ2. Making the initial subdivision twice as dense
results in 50% increase in the required storage for the structure
and allows to match the traversal performance for any type of ray
throughout the scene. If necessary, one can eliminate the memory
overhead due to the higher resolution by using a voxel map with
more than two levels.

Comparison with Macro Regions: In order to provide further in-
sight into how the different stages of our construction algorithm
influence the traversal performance, we evaluated the merge and
expansion on uniform grids (see Table 5). Efficient algorithms for
empty space skipping in uniform grids have been of interest pre-
viously, and we implemented the macro region construction algo-
rithm by Devillers [Dev89] for a comparison baseline. This related
approach could be viewed as a simplification of ours, where the ex-
pansion and merge phase are only applied for the empty cells of a
uniform grid.

The statistics in Table 5 demonstrate that our method is able to
provide faster traversal, owing to the ability to optimize the ex-
pected traversal cost for both empty and non-empty cells of the
acceleration structure: Efficient traversal of non-empty cells is crit-
ical when looking at geometry from shallow angles, and even more
so with increasing grid resolutions. We also confirm that perform-
ing expansion after a merge step delivers the best results in terms
of both ray traversal and memory footprint. Furthermore, compar-
ing the results in Table 5 and Table 3 shows that a major amount of
the traversal performance is obtained by designing our method to
efficiently handle a dense, multi-level initial space subdivision.

6.3. Dynamic Scenes

For dynamic scenes, we compare performance against a standard
two-level grid ray tracer with per-frame rebuild of the accelera-
tion structure. We measure the improvement in image quality when
using irregular grids by rendering images using ambient occlu-
sion. The number of ambient occlusion samples per pixel that can
be traced without exceeding the pre-determined time per frame is
listed in Table 4. While a two-level grid will always be faster to con-
struct than our acceleration structure (we perform additional build
steps) the added build time is usually balanced by a faster traver-
sal for irregular grids. If the available render time is split equally
between construction and traversal, our method outperforms the
two-level grid ray tracer with respect to image quality. While this
distribution of build time and traversal time might not always be
optimal, it performs well in practice and can be used to automati-
cally compute optimal grid densities as described below.

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

Pérard-Gayot et al. / GPU Ray Tracing using Irregular Grids

10FPS (100ms) 20FPS (50ms) 30FPS (33ms)
Scene #Tris 2L Grid Ours 2L Grid Ours 2L Grid Ours

1spp 8spp1spp 8spp

174K
λ1,λ2 0.2, 2.0 0.3, 2.4 0.2, 2.0 0.3, 2.4 0.2, 2.0 0.3, 2.4

AO spp 2 20 1 8 0 3

3spp

13spp

3spp

13spp

252K
λ1,λ2 0.2, 2.0 0.3, 2.4 0.2, 2.0 0.3, 2.4 0.2, 2.0 0.3, 2.4

AO spp 21 57 8 24 3 13

8spp

1spp

8spp

1spp

1.6M
λ1,λ2 0.03, 0.6 0.3, 2.4 0.03, 0.6 0.02, 0.16 0.03, 0.6 0.01, 0.08

AO spp 1 8 0 1 0 0

Table 4: AO spp is the (rounded down) number of Ambient Occlusion samples per pixel we can render for dynamic scenes (fairy, exploding
dragon, breaking lion) at a resolution of 1024x1024 with a specific frame rate. We use the time budget for build and traversal (including
primary rays), but ignore additional overheads like framebuffer display or keyframe interpolation.

Scene Traversal Memory
Resolution MRay/s MB

Sponza Macro regions 167 (+0%) 10
Ours (M) 169 (+1%) 8

172×71×105 Ours (E) 182 (+9%) 47
Ours (M + E) 185 (+11%) 8

Conference Macro regions 108 (+0%) 9
Ours (M) 116 (+7%) 8

210×133×50 Ours (E) 121 (+12%) 50
Ours (M+E) 135 (+25%) 8

Table 5: The merge (M) and expansion (E) steps of the irregu-
lar grid construction can be used in combination with uniform in-
stead of hierarchical grids. We compare the performance for pri-
mary rays for the viewpoints in Figure 7(a) and Figure 7(b) to the
macro regions in [Dev89]. The resolution is computed with λ = 5.

Parameter selection: We determine build parameters fully auto-
matically by setting a fixed ratio λ1 : λ2 = 1 : 8 and testing our
build implementation on each input scene using λ1 ∈ [0.01,0.3],
i.e. λ2 ∈ [0.08,2.4]. We choose this ratio in order to approximately
double the resolution in each dimension in the second level of the
initial grid. For each test scene, we perform test runs using multiple
densities, starting at the minimum and increasing it as long as the
total build time does not exceed half of the time budget. We then
select the parameters that yield the highest acceleration structure
quality.

Together with the performance for static scenes, the results in Ta-
ble 4 highlight another important contribution of this work. Using
the same construction and traversal algorithm, we are able to obtain

a rendering performance that is adequate for ray tracing both static
and dynamic geometry. As opposed to supporting multiple vari-
ants of construction algorithms (e.g. LBVH, HLBVH, SBVH), our
work makes this possible by automatically adjusting two intuitive
parameters, greatly simplifying the development and maintenance
of the actual implementation.

7. Conclusion

We presented a novel, grid-based acceleration structure for ray trac-
ing on GPUs: The irregular grid. With this work, we demonstrate
that efficient ray tracing is also possible with a non-hierarchical ac-
celeration structure. We achieve this thanks to a few novel insights
into ray traversal of regular acceleration structures like grids.

First, we propose a grid traversal algorithm that takes advantage
of ray/box intersection tests—an operation that is very efficiently
performed on a modern GPU. We take advantage of this and opti-
mize the acceleration structure by repeatedly merging its cells to-
gether in order to improve the expected cost w.r.t. SAH. This elim-
inates the traversal bottleneck caused by empty space skipping in
regular acceleration structures such as two-level grids.

Second, we separate the cell boundaries for entering and exiting
rays, which gives us the opportunity to extend the exiting bound-
aries of cells. With this, we reduce the amount of necessary traver-
sal steps and ray-primitive intersection tests, resulting in traversal
performance that is not limited by memory latency.

Finally, depending on the selected density parameters, our
method can provide both a ray traversal performance that rivals
state-of-the-art methods for static scenes, as well as build times that
allow for ray tracing dynamic scenes with per-frame rebuild of the
structure. Altogether, we believe that thanks to its attractive proper-

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

Pérard-Gayot et al. / GPU Ray Tracing using Irregular Grids

ties, the irregular grid is an acceleration structure worth considering
for ray tracing both static and dynamic scenes.

There are numerous opportunities for future work: For exam-
ple, changing the initial subdivision scheme or varying the structure
used to store the voxel map. Another potential for further research
includes adapting the novel aspects of our traversal method to other
acceleration structures like kd-trees or BVHs.

Acknowledgments

We would like to thank the anonymous reviewers for their com-
ments and suggestions. This work is co-funded by the European
Union (EU), as part of the Dreamspace project, and by the Intel
Visual Computing Institute Saarbrücken.

References

[AL09] AILA T., LAINE S.: Understanding the efficiency of ray traversal
on GPUs. In HPG ’09: Proceedings of the 1st ACM conference on High
Performance Graphics (2009), ACM, pp. 145–149.

[ALK12] AILA T., LAINE S., KARRAS T.: Understanding the Efficiency
of Ray Traversal on GPUs – Kepler and Fermi Addendum. NVIDIA
Technical Report NVR-2012-02, NVIDIA Corporation, June 2012.

[ÁSK14] ÁFRA A. T., SZIRMAY-KALOS L.: Stackless Multi-BVH
traversal for CPU, MIC and GPU ray tracing. Computer Graphics Forum
33, 1 (2014), 129–140.

[AW87] AMANATIDES J., WOO A.: A Fast Voxel Traversal Algorithm
for Ray Tracing. In Eurographics ’87. Elsevier Science Publishers, 1987,
pp. 3–10.

[CS94] COHEN D., SHEFFER Z.: Proximity Clouds&Mdash;an Acceler-
ation Technique for 3D Grid Traversal. Vis. Comput. 11, 1 (Jan. 1994),
27–38.

[CWVB83] CLEARY J. G., WYVILL B. M., VATTI R., BIRTWISTLE
G. M.: Design and Analysis of a Parallel Ray Tracing Computer. In
Graphics Interface ’83 (1983), pp. 33–38.

[Dev89] DEVILLERS O.: The Macro-Regions: An Efficient Space Subdi-
vision Structure for Ray Tracing. In EG 1989-Technical Papers (1989),
Eurographics Association.

[EI07] ES A., İŞLER V.: Accelerated Regular Grid Traversals using Ex-
tended Anisotropic Chessboard Distance Fields on a Parallel Stream Pro-
cessor. J. Parallel Distrib. Comput. 67, 11 (2007), 1201–1217.

[GPBG11] GARANZHA K., PREMOŽE S., BELY A., GALAKTIONOV V.:
Grid-based SAH BVH construction on a GPU. The Visual Computer 27,
6 (2011), 697–706.

[Gut14] GUTHE M.: Latency Considerations of Depth-first GPU Ray
Tracing. In Eurographics 2014 - Short Papers (2014), The Eurographics
Association.

[Hav01] HAVRAN V.: Heuristic Ray Shooting Algorithms. PhD thesis,
Faculty of Electrical Engineering, Czech Technical University in Prague,
2001.

[HMS06] HUNT W., MARK W. R., STOLL G.: Fast kd-tree Construction
with an Adaptive Error-Bounded Heuristic. In Proceedings of the 2006
IEEE Symposium on Interactive Ray Tracing (sep 2006).

[IWRP06] IZE T., WALD I., ROBERTSON C., PARKER S.: An Evalu-
ation of Parallel Grid Construction for Ray Tracing Dynamic Scenes.
Symposium on Interactive Ray Tracing (2006), 47–55.

[JW89] JEVANS D., WYVILL B.: Adaptive Voxel Subdivision for Ray
Tracing. In Proceedings of Graphics Interface ’89 (June 1989), Canadian
Information Processing Society, pp. 164–72.

[KA13] KARRAS T., AILA T.: Fast Parallel Construction of High-
quality Bounding Volume Hierarchies. In Proceedings of the 5th High-
Performance Graphics Conference (New York, NY, USA, 2013), HPG
’13, ACM, pp. 89–99.

[KBS11] KALOJANOV J., BILLETER M., SLUSALLEK P.: Two-Level
Grids for Ray Tracing on GPUs. In EG 2011 - Full Papers (Llandudno,
UK, 2011), Min Chen O. D., (Ed.), Eurographics Association, pp. 307–
314.

[KS09] KALOJANOV J., SLUSALLEK P.: A Parallel Algorithm for Con-
struction of Uniform Grids. In HPG ’09: Proceedings of the 1st ACM
conference on High Performance Graphics (2009), ACM, pp. 23–28.

[LGS∗09] LAUTERBACH C., GARLAND M., SENGUPTA S., LUEBKE
D., MANOCHA D.: Fast BVH Construction on GPUs. Comput. Graph.
Forum 28, 2 (2009), 375–384.

[MB90] MACDONALD J. D., BOOTH K. S.: Heuristics for Ray Tracing
using Space Subdivision. Visual Computer 6, 6 (1990), 153–65.

[MT97] MÖLLER T., TRUMBORE B.: Fast, minimum storage ray-
triangle intersection. Journal of Graphics Tools 2, 1 (1997), 21–28.

[NVI] NVIDIA CORPORATION: CUDA Unbound. https://
nvlabs.github.io/cub/.

[NVI07] NVIDIA CORPORATION: NVIDIA CUDA Compute Unified
Device Architecture Programming Guide. NVIDIA Corporation, 2007.

[PGDS09] POPOV S., GEORGIEV I., DIMOV R., SLUSALLEK P.: Ob-
ject Partitioning Considered Harmful: Space Subdivision for BVHs. In
HPG ’09: Proceedings of the 1st ACM conference on High Performance
Graphics (2009), ACM, pp. 15–22.

[PGSS06] POPOV S., GÜNTHER J., SEIDEL H.-P., SLUSALLEK P.: Ex-
periences with Streaming Construction of SAH KD -Trees. In Proceed-
ings of the 2006 IEEE Symposium on Interactive Ray Tracing (sep 2006),
pp. 89–94.

[PGSS07] POPOV S., GÜNTHER J., SEIDEL H.-P., SLUSALLEK P.:
Stackless KD-Tree Traversal for High Performance GPU Ray Tracing.
Computer Graphics Forum 26, 3 (Sept. 2007).

[PL10] PANTALEONI J., LUEBKE D.: HLBVH: Hierarchical LBVH
Construction for Real-Time Ray Tracing. In High Performance Graphics
(2010).

[RSH05] RESHETOV A., SOUPIKOV A., HURLEY J.: Multi-Level Ray
Tracing Algorithm. ACM Transaction of Graphics 24, 3 (2005), 1176–
1185. (Proceedings of ACM SIGGRAPH).

[SFD09] STICH M., FRIEDRICH H., DIETRICH A.: Spatial Splits in
Bounding Volume Hierarchies. In Proc. of High-Performance Graphics
(2009), pp. 7–13.

[Tsa09] TSAKOK J. A.: Faster Incoherent Rays: Multi-BVH Ray Stream
Tracing. In Proceedings of the Conference on High Performance Graph-
ics 2009 (New York, NY, USA, 2009), HPG ’09, ACM, pp. 151–158.

[Wal10] WALD I.: Fast Construction of SAH BVHs on the Intel Many
Integrated Core (MIC) Architecture. IEEE Transactions on Visualization
and Computer Graphics (2010).

[WH06] WALD I., HAVRAN V.: On Building Fast kd-Trees for Ray Trac-
ing, and on Doing that in O(N log N). In Proceedings of the 2006 IEEE
Symposium on Interactive Ray Tracing (sep 2006), pp. 61–69.

[WIK∗06] WALD I., IZE T., KENSLER A., KNOLL A., PARKER S. G.:
Ray Tracing Animated Scenes using Coherent Grid Traversal. In ACM
SIGGRAPH 2006 Papers (2006), pp. 485–493.

[WK06] WÄCHTER C., KELLER A.: Instant Ray Tracing: The Bound-
ing Interval Hierarchy . In Rendering Techniques 2006, Proceedings of
the Eurographics Symposium on Rendering (2006).

[WMG∗07] WALD I., MARK W. R., GÜNTHER J., BOULOS S., IZE T.,
HUNT W., PARKER S. G., SHIRLEY P.: State of the Art in Ray Tracing
Animated Scenes. In Eurographics 2007 State of the Art Reports (2007).

[WMS06] WOOP S., MARMITT G., SLUSALLEK P.: B-KD Trees for
Hardware Accelerated Ray Tracing of Dynamic Scenes. In Proceedings
of Graphics Hardware (2006), pp. 67–77.

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

https://nvlabs.github.io/cub/
https://nvlabs.github.io/cub/

