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We present a method for converting denoising neural networks from spatial
into spatio-temporal ones by modifying the network architecture and loss
function. We insert Robust Average blocks at arbitrary depths in the network
graph. Each block performs latent space interpolation with trainable weights
and works on the sequence of image representations from the preceding
spatial components of the network. The temporal connections are kept
live during training by forcing the network to predict a denoised frame
from subsets of the input sequence. Using temporal coherence for denoising
improves image quality and reduces temporal flickering independent of
scene or image complexity.
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1 INTRODUCTION
Deep Convolutional Neural Networks (CNNs) have been recently
established as state-of-the-art techniques for image filtering in var-
ious areas. In this paper, we discuss denoising images generated
via Monte Carlo path tracing in Visual Effects (VFX) production.
Informally, denoising techniques reduce error by averaging pixel
values in space and time, and the challenging aspects are balancing
noise reduction with loss of detail due to blurring across image
features. The main benefit of using CNNs for denoising is the large
amount of filters with trainable weights that can provide very good
feature preservation. This is especially important for VFX, where
visual realism and image fidelity is often driven by the amount of
detail in the rendered images. In this paper, we propose a method
that improves temporal averaging while preserving image detail.
We show that the technique applies to denoising complex imagery
that contains interactions between rendered elements such as skin,
water and hair.

Our method is targeted for production, where flickering, either
introduced or left untreated by the denoising method, is not accept-
able. We incorporate temporal information into our neural networks
via recurrent components that interpolate between the latent rep-
resentations of consecutive frames. These components consider a
sequence of preceding and succeeding frames and convert spatial
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kernel-predictive neural networks into spatio-temporal ones. The
main benefits of kernel-predictive networks for our target applica-
tion are the robustness against color shifts, and the ability to reuse
denoising weights across multiple image buffers (AOVs). We fur-
thermore train without ground truth reference images, which can
be prohibitively expensive to generate in large enough quantities in
a production setting.
The contributions of this paper revolve around a set of convo-

lutional network layers that we call Robust Average (RA) blocks.
These blocks perform interpolation and outlier removal in the time
dimension. They operate on the network’s internal state and can be
inserted at arbitrary depth. The resulting networks have increased
(but fixed) receptive field in time and better incorporate information
from the entire frame sequence. The balance between spatial and
temporal information used for denoising is learned from the data.
This can lead to the networks degenerating to spatial ones during
training. To prevent this, we warp each frame inside the temporal
window of the network to convert it, as much as possible, to an
estimate of the frame being denoised (the central frame). In order to
further increase temporal contributions in the absence of temporal
references during training, we propose a loss reformulation which
forces the network to estimate the output frame from subsets of the
input sequence that exclude the central frame. We thereby convert
spatial loss functions into temporal ones without losing the ability
to penalize warping artifacts.

We also propose to use thresholds on the activations of the kernel
predictive layers. On one hand, this allows for user control of the
influence of the denoising network on the input images. On the
other, it prevents artifacts created by overestimated kernel weights
in high-intensity regions of the image.

2 RELATED WORK
Kernel-predictive neural networks Our work is closely related
to [Bako et al. 2017; Vogels et al. 2018; Zhang et al. 2021, 2023], since
we use kernel-predictive denoising networks, i.e., the output of the
network are per-pixel 2D (or 3D) kernels. Instead of predicting the
colors the denoised image directly, the kernels are applied (via dot
product) on the input image to denoise it. The main difference be-
tween our method and these related works is in the neural network
components and loss for temporal denoising, but the remaining
techniques are compatible with our method. Mildenhall et al. [2018]
employ a kernel predictive network for denoising burst photographs
(instead of rendered images). Their loss generalization is similar to
ours in that it introduces loss terms for the individual images in the
burst. We instead pair images before and after the central frame to
combat occlusion and disocclusion, and do not downscale temporal
terms while training. Instead of filtering the image after it is ren-
dered, sample-based methods for error reduction such as [Gharbi
et al. 2019] correct pixel samples before aggregating them into a
framebuffer. We scope this paper on using temporal information for
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Fig. 1. A sketch of the recurrent ResNet network model used for evaluation. The network consists of 24 residual blocks, RRA blocks added after blocks
3,6,9,12,15 and 24, and skip connections after the first 4 RA blocks. The internal dimension of all convolutional layers is 80, except for the kernel predictive
layers, which are 5 × 5 × 5 = 125 large.

denoising, and leave out discussion on techniques that run as the
individual frames are rendered like [Cho et al. 2021; Yu et al. 2021].

Recurrent neural networks for denoising Introducing recur-
rent connections in denoising neural networks has been done, for
example by Chaitanya et al. [2017] and Hasselgren et al. [2020].
The purpose of these connections is the same as in our work: to
force the network to use temporal information when denoising. Our
approach differs in that it is bidirectional, i.e., we take advantage of
succeeding as well as previous frames. The remaining differences
with these works are due to the target applications. We trade off
network complexity to achieve higher image quality.

Non-neural denoising Denoising techniques which do not rely
on neural networks can also be used in production. Methods like
Non-Local Means Filtering [Buades et al. 2005] or Guided Filtering
[He et al. 2013], use model-based approaches to derive per-pixel
weights used for spatial denoising. Other similar techniques were
extended to include temporal information [Dabov et al. 2007] in
addition to the larger body of work for film restoration which can
be repurposed for Monte Carlo denoising [Kokaram 2014]. We use
such a denoiser to generate pseudo-reference images, but leave
further discussion on non-neural denoising outside the scope of this
paper. Finally, we recommend the survey on adaptive sampling and
denoising by Zwicker et al. [2015] for the readers looking for an
overview of the field.

3 ROBUST AVERAGE BLOCKS
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Fig. 2. Robust Average block for a sequence of length 5. We exclude the first
frame, average the remaining frames, and interpolate between the average
and the excluded frame. This is repeated (recurrently) until each frame of
the sequence has been interpolated with the robust average of the other
frames.

In the following, we introduce the Robust Average (RA) blocks.
We use them to force the network to denoise in time via latent space

interpolation. Intuitively, averaging the internal state across several
noisy estimates of the same image will result in similar network
output and reduce temporal noise. However, we did not obtain
satisfactory results using a straight forward implementation that
just averages network state at various depths. The networks we tried
were prone to creating artifacts (e.g. light leaks). Our understanding
is that averaging in latent space reduced the ability of the network
to remove outliers caused by noise or warping errors.
We address this problem in two ways. First, we let the network

independently predict interpolation weights and use them to blend
each frame of the sequence with an average of the remaining frames.
This enables outlier removal and preserves the ability of the network
to represent an identity transformation. The latter is important for
networks like ResNet [He et al. 2016]. Second, given enough frames,
we use an averaging operation that is robust to outliers: given a set
of values 𝑆 ⊂ R with |𝑆 | ≥ 3, we call robust average computing the
mean after discarding the minimum and maximum:

𝑟𝑎𝑣𝑔(𝑆) = 1
|𝑆 | − 2

(∑︁
𝑆

𝑥 −max(𝑆) −min(𝑆)
)

(1)

The Robust Average block shown in Figure 2 operates on a fixed
length window of frames centered at the current frame. First, we
exclude one frame from the sequence, and compute robust average
of the remaining frames. Then a set of convolutional layers is used
to estimate per-pixel weights, which are then used to blend the
excluded frame with the average. This is repeated once for each
frame in the sequence. Note that the operation of the RA block is
recurrent since each successive step uses the result of the previous
step.

The main advantage of the RA blocks compared to averaging, is
that the balance between using temporal and spatial information
for each pixel is learned instead of fixed. The network can reduce or
increase the amount of temporal interpolation per pixel at different
depths. In addition to noise reduction, this helps with correcting
errors due to inaccurate warping.

We usemotion vectors generated during rendering towarp frames
on each side of the central frame. This includes auxiliary output
buffers such as the albedo and normals. We also compute confidence
in the warp from the motion vectors the warped albedo and normal
buffers. In order to avoid temporal artifacts without decreasing
weights along temporal connections, we mix in pixel values from
the central frame inversely proportional to the confidence score for
each side frame. This helps prevent the network from degenerating
to a spatial only model during training.
The number of frames used as input is fixed because the blocks

are bidirectional. However, we are able to extend the temporal range
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by running multiple denoising passes. This is possible for networks
with high detail preservation and low bias such as sharpening.

As the blocks can be added at any depth, they allow filtering in
time in the very first layers. This is in contrast with approaches that
denoise in space first, and only then introduce temporal connections.
In the evaluation, we show evidence that our method helps retain
small scale image features that are blurred by a network with a deep
spatial component followed by a temporal part. Furthermore, adding
RA blocks at multiple depths reduces the size and expressive power
of the spatial-only components of the network. This favors denoising
in the time dimension, and hinders the model from degenerating
into a spatial-only during training.

4 THRESHOLDED KERNEL PREDICTION
A common choice for activation for the output layer for kernel-
predictive networks is the softmax function:

𝜎 (𝑤𝑖 ) =
𝑒𝑤𝑖∑
𝑗 𝑒
𝑤𝑗

(2)

This has the advantage that the weights𝑤𝑖 are normalized to sum
up to 1, however the predicted weights are strictly positive. With
non-zero kernel weights, every pixel in the kernel support con-
tributes to the final estimate. We found that this can lead to artifacts
when high intensity pixels are present in the kernel support. The
high intensity pixels can be fireflies, lightsources, or specular reflec-
tions of lightsources, and they amplify inaccuracies in the predicted
weights.

For intuition, consider a value 𝑦 ∈ R that is reconstructed from
a set of estimates 𝑥𝑖 , using kernel weights𝑤𝑖 . If there are weights
𝑤 𝑗 = 0 participating in the reconstruction, it holds that 𝑦 can be
reconstructed without additional error even if 𝑥 𝑗 becomes an outlier,
e.g., a firefly. Note that in the case of Monte Carlo denoising, the
objective is to reconstruct the correct pixel values from random
estimates. It is therefore likely that the estimates for the same pixel
regions sometimes contain fireflies, i.e., pixels with comparatively
larger error.
We enable zero kernel weights by using use thresholded ReLUs

followed by normalization in the kernel outputting layer of our
networks. More specifically, our activations are:

𝜂𝑡 (𝑤𝑖 ) =
max(0,𝑤𝑖 − 𝑡)∑𝐾
𝑗=1max(0,𝑤 𝑗 − 𝑡)

(3)

with 𝑡 < 1
𝐾
to prevent zeroing out normalized kernels with equal

weights throughout the domain. If not mentioned otherwise, we
report results using 𝑡 = 1

2𝐾 . If all weights are below 𝑡 , we replace the
resulting kernel with identity. Note that thresholds can be used with
any activation, including softmax, at the expense of an additional
normalization if it is desirable for the kernel weights to sum up to 1.
Increasing the threshold can be used to correct loss of detail in

denoised images at the expense of reintroducing noise from the
input (see Figure 3). This accommodates fine-tuning the model after
training based on artist feedback, if done once before the trained
model is deployed. Alternatively, the threshold value can be user
controlled and adjusted per image. Finally, note that in our case
increasing the kernel threshold usually results in less temporal

©20th Century Studios / Walt Disney Studios Motion Pictures

t = 1 / 125 t = 4 / 125 t = 16 / 125 t = 32 / 125

Fig. 3. Increasing the value of the kernel threshold 𝑡 adjusts the influence
of the denoiser on the image. The figure shows denoised images and scaled
difference to the noisy input image. ©20th Century Studios / Walt Disney
Studios Motion Pictures

utilization. This is because for each weight for the central frame, we
have multiple weights for remaining frames.

5 SPATIAL-TO-TEMPORAL LOSS CONVERSION
Denoising via convolutional neural networks is commonly formu-
lated as follows. Let 𝑋 := {𝑥1, . . . , 𝑥𝑁 } and 𝑌 := {𝑦1, . . . , 𝑦𝑁 } be
two corresponding sets of noisy and reference images, and 𝑙 (·, ·) :
R𝑛 × R𝑛 → R a per-pixel image loss (e.g. mean absolute error). Let
𝑓𝜃 (·) : R𝑛 → R𝑛 , be a convolutional neural network parameterized
by 𝜃 that denoises one image at a time. The optimal set of parameters
for the network is determined via supervised learning:

argmin
𝜃

1
𝑁

𝑁∑︁
𝑖=1

𝑙

(
𝑓𝜃 (𝑥𝑖 ), 𝑦𝑖

)
(4)

In the following, we set 𝑁 = 1 to simplify notation.
We propose to generalize the procedure from a spatial into a

temporal one by asking the neural network to predict the refer-
ence image from any subset of the input image sequence. Let 𝑋 :=
{𝑥−𝑘 , . . . , 𝑥𝑘 } be a set of consecutive noisy frames and 𝑦0 the refer-
ence for the center frame. Assume that for each 𝑖 ∈ [−𝑘, 𝑘], there
is a motion compensating transformation (image warp) that aligns
features from 𝑥𝑖 to 𝑥0, and let 𝑋 ′ := {𝑥 ′−𝑘 , . . . 𝑥

′
𝑘
} be the set of trans-

formed images. Consider a family of neural networks𝐺𝜃 := {𝑔𝑖
𝜃
(·)}

such that for each 𝑋 ⊂ 𝑋 ′, there is a 𝑔𝑖
𝜃
(𝑋 ) : · → R𝑛 . The mini-

mization problem then becomes:

argmin
𝜃

∑︁
𝑋̂ ∈P(𝑋 ′ )

𝑙

(
𝑔𝑖
𝜃
(𝑋 ), 𝑦0

)
(5)

where P(𝑋 ′) is the power set of 𝑋 ′. Given 𝑔𝜃 (·) : R𝑛 (2𝑘+1) → R𝑛 ,
a spatio-temporal kernel-predictive neural network for 𝑋 ′, a set𝐺𝜃
is easy to construct by zeroing out predicted kernel weights for the
excluded frames and re-normalizing the remaining weights. In other
words, we assume that the neural networks predict an image from
a set of estimates instead of a single one. We treat noise, warping
error, and other biases as deviations from the target image and rely
on the network to correct for them.
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Fig. 4. Spatial to temporal loss conversion for a kernel-predictive neural
network. Here, we add two temporal loss terms that force the network to
predict the center frame from pairs of one previous and one subsequent
frame. We use the same reference frame 𝑟𝑒 𝑓0 in each term.

In practice, we do not construct a network and loss term for each
subset of the input sequence to reduce memory and computational
complexity. Instead, as shown in Figure 4, we train a network with
temporal window of 5 with loss terms for:

• the center frame
• a weighted average of the first and fourth frame
• a weighted average of the second and fifth frame

we compare against the center reference frame in each case. We
select pairs of frames before and after the center frame, to improve
the chance of retaining image features that are occluded after or
revealed during the central frame. We only use one term containing
the center input frame in order to promote the use of temporal
information.

Note that our approach works with a spatial loss function instead
of depending on measured deviations in time. Because of that, we
are able to train without temporal reference images, while still
penalizing error using the center frame. As a result, the network
learns to reduce error coming from the off-center frames that is
caused by either noise, motion, or warping. Temporal artifacts can be
further penalized by adding a loss term that compares the combined
result to the reference frame. Note that Vogels et al. [2018] train the
temporal component of their denoiser using just the combined loss
term. In our case: end to end training of a spatio-temporal network,
this steered the network to use less temporal information. Therefore,
we only used a downweighted global loss term to post-train models
if they introduce temporal artifacts.
Our conversion works by adding spatial loss terms for output

images generated via temporal averaging, independent of the choice
of spatial loss 𝑙 (·, ·). We tested this by training with various losses
including mean absolute error (𝐿1), symmetric mean absolute per-
centage error [Vogels et al. 2018], and the perceptual loss in [Gatys
et al. 2016; Johnson et al. 2016]. We did not observe substantial
differences in the learning behavior in the different cases. However,
networks trained with a perceptual loss had better detail preserva-
tion compared to the remaining losses. We therefore train using

𝑙 (𝑥,𝑦) :=
(
𝐿𝑉𝐺𝐺5,4 (𝑥,𝑦) + 𝐿𝑉𝐺𝐺3,4 (𝑥,𝑦)

)
𝐿𝑆𝑀𝐴𝑃𝐸 (𝑥,𝑦) (6)

where 𝐿𝑉𝐺𝐺𝑎,𝑏
(·, ·) is a 𝐿1 distance in the latent space of block 𝑎,

layer 𝑏 of VGG19 [Simonyan and Zisserman 2014] trained on Ima-
geNet [Deng et al. 2009]. The choice of addition and multiplication
for the separate losses is to take into account the implicit scaling of
the terms. We sum terms with similar magnitude and multiply oth-
erwise. We opted for SMAPE instead of 𝐿𝑉𝐺𝐺2,2 (·, ·) as a "feature"
loss, because the latter led to aliasing artifacts. A simpler 𝐿1 loss
can be used instead of SMAPE depending on color space and pixel
value range and distribution.

6 TRAINING DATA
Creating large bodies of training data for machine learning methods
can be challenging in a VFX environment because of the effort
required to produce imagery. It is often the case that generating a
fully converged reference images or image sequences for denoising
is prohibitively expensive. Based on the results demonstrated by
Lehtinen et al. [2018], we do not train using ground truth reference
images. Instead, we render images at different noise levels and use
them to construct input and target pairs for training. In addition
to the noisy references we also use pseudo-references generated
by an existing denoiser. The latter can be a previous version of
the denoising network, or in our case, a separate method based
on using a modified TV-L1 [Wedel et al. 2009] optical flow method
initialization from the renderer-provided motion vectors, confidence
based robust averaging, Non-Local Means Filtering [Buades et al.
2005], and Guided Filtering [He et al. 2013].
The training data we use for evaluation has been generated by

instrumenting a production path tracer to render images at 3 noise
levels:

• noisy RGB image using 𝑛 samples per pixel
• half quality RGB image using

⌊
𝑛
𝑒

⌋
samples per pixel1

• low quality RGB image using 4 samples per pixel
The number of samples taken varies per image and per pixel. The
noise level of the images is typically low enough to deliver final
quality after denoising and compositing. During training, we pick
the pairs of noise levels randomly (including pseudo-references)
and denoise from more noisy to less noisy.

We train on data from approximately 11000 rendered sequences
of length of up to several hundred frames. From these, we randomly
sample 10 disjoint sets of 16000 to 20000 tiles of dimensions 128 ×
128 × 11.

7 EVALUATION
In this section, we compare our network extension via RA blocks
to an alternative spatio-temporal architecture used in [Vogels et al.
2018] which is, to our knowledge the most similar alternative in
terms of target application and network structure. We show that it
is possible to obtain at least similar results for a single image (Figure
5, Table 2), while using larger temporal weights (Figure 7). Note that
our networks do not contain temporal connections other than the
1We use an irrational fraction to ensure that subsequences of quasi-random samples
remain low discrepancy.
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UNet tKPCN oursnoisy

Fig. 5. Our denoiser delivers similar image quality with slightly better image
details compared to a baseline (tKPCN) network without RA blocks. A spatial
UNet keeps detail by preserving noise, and sacrificing temporal stability.
©20th Century Studios / Walt Disney Studios Motion Pictures

ones in the RA blocks (even in the final kernel-predictive layers).
The network being able to balance weights between the central and
non-central frames is thanks to these components.

©20th Century Studios / Walt Disney Studios Motion Pictures

noisy 0.0418 0.2486 0.4142 0.2420 0.0436 denoised

Fig. 6. Temporal breakdown of denoising weights. Noisy, denoised image,
and contributions for the input sequence of 5 frames. The outermost frames
have significantly smaller total contribution, however the minimum and
maximum weights for each frame are 0 and 1. ©20th Century Studios / Walt
Disney Studios Motion Pictures

The Robust Average blocks can be used together with a number
of convolutional neural network types. We tested this on ResNet
and UNet architectures, as well as the multiscale ResNet variant in
[Vogels et al. 2018]. The trained models performed sufficiently well
to be used for noise reduction in a commercial rendering pipeline.
The key contributing factors for this were the absence of introduced
temporal flickering and the detail/edge preservation (see Figure
5). Compared to noise reduction via sampling, the denoised static
images compared favorably to frames with 1

4 estimated pixel error.
For final quality renders, we were not able to achieve lower tem-
poral noise than a denoised sequence of frames by increasing pixel
samples.

From the topologies we tested, the best performing network is a
ResNet (Figure 1) without upscaling and downscaling components.
The network denoises from a 5 frame temporal window using 5×5×5
kernels (height, width, time), and has 24million trainable parameters.

The input for the network is pre-warped using motion vectors and
consists of color, albedo, normals, and confidence. The latter is a
single channel image representing confidence in the warp derived
from the motion vectors.

Figure 6 is an example from a scene with relatively slow camera
or character movement. The average pixel contribution from the
central frame is smaller than the combined weight of the remaining
frames, meaning that the denoiser uses more temporal than spa-
tial information. The outermost frames have significantly smaller
average contribution. This is expected, given that in a large ran-
dom training set the temporal coherency and image warp quality
decreases fast with the distance to the central frame. On the other
hand, the minimum and maximum weights for each frame are 0 and
1. In other words, the network can completely replace pixel values
from the central frame from the surrounding frames.

©20th Century Studios / Walt Disney Studios Motion Pictures

noisy tKPCN spatial
0.7198

temporal
0.2802

ours spatial
0.4142

temporal
0.5858

Fig. 7. Spatial vs temporal contributions for our denoiser compared to a
baseline (tKPCN) using a temporal loss and network like [Vogels et al. 2018]
instead of our loss and RA blocks. ©20th Century Studios / Walt Disney
Studios Motion Pictures

When compared against a baseline, the RA blocks and temporal
loss improve temporal utilization. We remove all RA blocks from the
network, and instead use the temporal module and loss proposed in
[Vogels et al. 2018]. As with their work, the spatial parameters are
still shared across the sequence of input frames. This network, which
we call tKPCN, can train to denoise in time, however strongly favors
the center frame if trained with a standard loss. Figure 7 shows a
crop from the same scene as Figure 6, which exhibits good temporal
coherency. The baseline method uses smaller weights for pixels
from the non-center frames both on average: (0.0063, 0.1158, 0.1503,
0.007) compared to (0.0418, 0.2486, 0.2420, 0.0436); and in terms of
maximum weights: (0.1163, 0.9636, 0.8337, 0.1122) compared to 1.
We break down the influence of the network structure and the

loss function in Table 1. Both our network and the tKPCN baseline
can be trained to favor the central frame when using a "spatial" loss
term measuring the difference to the reference image. This is not
surprising, since there is no incentive for the network to use the pixel
values from the surrounding frames. The RA blocks slow down the
rate at which the network converges to a mostly spatial network. On
the other hand, the temporal loss reformulation can steer both our
network and the baseline to use larger temporal weights, however
we were not able to train a tKPCN network with a good temporal
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frame id
-2 -1 0 1 2

RA + avg 0.0197 0.1671 0.6409 0.1514 0.0209
spatial loss max 0.2013 0.3223 0.9966 0.3199 0.1950

RA + avg 0.0580 0.1402 0.5694 0.1531 0.0792
our loss max 0.9959 0.9982 1.0000 0.9925 0.9582

tKPCN + avg 0.0021 0.1387 0.7200 0.1379 0.0013
spatial loss max 0.1505 0.9956 1.0000 0.9975 0.3985

tKPCN + avg 0.0387 0.2994 0.4076 0.2123 0.0421
our loss max 0.9831 0.9999 1.0000 0.9987 0.9964

Table 1. Ablation tests on a frame from the Payakan scene (see Figure 8). RA
blocks provide better temporal utilization with a spatial-only loss compared
to the non-RA network trained for 11 epochs (35k training samples each).
Both networks converge to using predominantly spatial information with
further training with the spatial loss. Our loss reformulation does improve
temporal utilization for the tKPCN network.

utilization, no artifacts, and better detail preservation compared to
our RA models (see Figure 8). In our experience, it was easier to
train a tKPCN model to remove more noise, while RA networks
are better at edge preservation. For this comparison, we trained the
both networks with identical losses and procedure: an initial pass
with the temporal loss followed by pass with added downscaled
spatial loss term. We report results using the checkpoints with the
best validation loss for both networks.

©20th Century Studios / Walt Disney Studios Motion Pictures

input

RA +
our loss

tKPCN +
our loss

Fig. 8. Image comparison using our network and a tKPCN model trained
with our temporal loss reformulation (from Table 1). The tKPCN model
removes more noise, while our network preserves more detail, especially
on parts of the image where the creature is submerged underwater. ©20th
Century Studios / Walt Disney Studios Motion Pictures

The test in Figure 6 shows the network predicting predominantly
spatial weights for the hand of the character, which moves fast, and
predominantly temporal weights on the character face and body
which remain mostly static. Reverting to spatial denoising in the
absence of temporal coherency reduces or avoids image artifacts
such as ghosting and light leakage which occur when interpolating
between non-corresponding pixel values in time.

©20th Century Studios / Walt Disney Studios Motion Pictures

noisy denoised specular denoised

Fig. 9. Denoising the specular component of a render with the kernel
weights from the RGB output can work well in practice. Some small details
in the specular component of the image are still recognizable after denoising.
©20th Century Studios / Walt Disney Studios Motion Pictures

Figure 9 shows the level of detail we are able to obtain when
predicting weights from an image and applying them only to the
specular component of the image. While not mathematically correct,
this works well enough in practice and recuces computational effort
when denoising renders with a lot of auxiliary buffers.

In Table 2 we compare peak signal-to-noise ratio (PSNR) and
structural similarity index measure (SSIM) on our datasets. We ag-
gregate statistics from a set of test images that have not been used
for training or validation. In the test we denoise from the half qual-
ity RGB image to a pseudo-reference denoised with a production
denoiser. In VFX, the quality of the denoised images is judged by
expert users, which makes the assessment perceptual rather than
statistical. The test results here do match our assessment of the
relative image quality: both models deliver similar results, and our
network is consistently better at keeping image detail.

PSNR SSIM
min avg max min avg max

input 42.4898 44.6739 46.8580 0.9880 0.9900 0.9920
tKPCN 42.0127 44.9809 47.9492 0.9877 0.9910 0.9944

ours 45.3110 48.0516 50.7922 0.9946 0.9957 0.9969

Table 2. Aggregate SSIM and PSNR comparison between our model and
the temporal baseline network. The statistics are from 768 test samples from
scenes that did not participate in training.

8 LIMITATIONS
We show a reconstruction from a low sample count input in Figure
10. While the reconstruction is plausible, details like the shadow
of the railing are missing. In this case, the network is not able to
predict image detail revealed by further sampling. With our data
and training, we favor preserving detail and sacrifice the ability
to reconstruct from very low initial sample counts. Note that the
reconstruction quality from lower sample counts can be accetable
for certain use cases, e.g., previews.
The main disadvantage of extending networks via Robust Aver-

age blocks is the increased network graph complexity. Mixing in
temporal components at different network depths makes it hard to

Publication date: April 2025.
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noisy denoised clean

Fig. 10. Validation image with low sample count. Our network fails to
reconstruct small scale shadows present in the pseudo-reference image.

train spatial and temporal parts of the network separately. In our
case, we had to compensate for this by training with batch size of
1 or 2 on a GPU with 24GB of memory. Memory restrictions can
also hinder increasing the temporal window of the neural network.
Our results suggest that there is not much potential in expanding
beyond 5 frames without improving the warping quality. We instead
increase the temporal window by running multiple denoising passes
if necessary.

The large network graph also impacts inference time negatively.
Our implementation in Python using Tensorflow 2.5 [Abadi et al.
2015] needs approximately 2 min to denoise a 2k stereo image on
a high-end GPU (Nvidia RTX A5000). This includes loading the
network from a file and compiling the network graph, warping the
input frames and auxiliary buffers, kernel prediction on tiles of size
728 × 548, kernel thresholding, warping output buffers, and ker-
nel application. In practice, we amortize the network initialization
by denoising in batches of frames, and optimize for efficiency by
running on CPUs with low thread counts, which results in longer
inference times.
Finally, denoising in time assumes temporal coherency in the

input sequence. If coherency in time is not present, we rely on the
network to revert to using spatial information. Our networks can,
for example, preserve shadows moving over static surfaces, however
we currently use a spatial denoiser for renders of fire and explosions.

9 CONCLUSION
In this paper, we introduce a method for designing and training
temporal denoising neural networks.We introduced a new recurrent
block pattern, an improved training technique, and an alternate
method for using temporal information in image sequences. We
believe that our work helps make a small step towards higher image
fidelity and rendering efficiency in VFX, and hope that this paper
will help and inspire further research in the field.
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