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Abstract
In this thesis we investigate the use of uniform grids as acceleration

structures for ray tracing on data-parallel machines such as modern graphics
processors. The main focus of this work is the trade-off between construc-
tion time and rendering performance provided by the acceleration structures,
which is important for rendering dynamic scenes. We propose several par-
allel construction algorithms for uniform and two-level grids as well as a ray
triangle intersection algorithm, which improves SIMD utilization for inco-
herent rays. The result of this work is a GPU ray tracer with performance
for dynamic scenes that is comparable and in some cases better than the
best known implementations today.
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Chapter 1

Background

In this chapter we introduce general notions such as Ray Tracing, Global
Illumination, and Acceleration Structures. If the reader feels confident in
his knowledge in the respective area, he may safely skip the corresponding
sections.

1.1 Rendering and Global Illumination

In this thesis we discuss algorithms for generating a two-dimensional image
from a scene consisting of three-dimensional geometric primitives. Those are
referred to as rendering algorithms. Very informally, the process of rendering
can be described as taking a photograph of some 3D objects. We refer to
these objects collectively as scene. The geometry (location and form) of
each of the scene objects is described by a set of geometric primitives, e.g.
points, triangles, spheres, polynomial patches. In this thesis we only consider
triangles, but the described algorithms can be extended to work with other
primitive types.

Rendering and Image Synthesis are very general notions. The purpose
of the algorithms described here concerns a family of rendering algorithms
called - global illumination algorithms.

We define global illumination simulation as the process of computing
how light interacts with the scene. The light is emitted from light sources
and then transformed by the objects in the scene. To calculate these trans-
formations, we attach additional information to the geometric primitives in
our scene. These properties define the appearance or color of the scene-
objects. We consider two types of information for appearance - the shaders
are programs that describe how the surfaces interact with light (or energy)
and the materials are data containers for properties relevant to the shaders.
Example interactions of objects and their surfaces with light include absorp-
tion, reflection, refraction, scattering etc.

Computing a global illumination solution amounts to determining the
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amount of light or energy travelling from some point p in some outgoing
direction ~ωo, which is the same as solving the rendering equation [Kaj86]:

L(p, ~ωo) = Le(p, ~ωo) +
∫

Ω+

fr(~ωi, p, ~ωo)Li(p, ~ωi) cos θid~ωi. (1.1)

It states that the outgoing radiance L(p, ~ωo) is the sum of the radiance
emitted from the point p and the radiance reflected from p, both along the
direction vector ~ωo. The reflected radiance is computed by integrating the
the incident energy Li(p, ~ωi) weighted by the BRDF function fr(~ωi, p, ~ωo)
over all possible incoming directions ~ωi. The cosine of the angle θi between
the incident direction ~ωi and the surface normal at p is a weighting factor
that accounts for the solid angle at ~ωi.

Typically an algorithm that approximates the Equation 1.1 works as
follows. First we want to render an image consisting of finite amount of
pixels. To do this we have to compute the color of each pixel. We determine
sample directions ~ωprim that go from the detector (eye-point, camera lens
etc.) through the pixels in the scene. We find all points in the scene that
are intersected by these primary rays. Then for each of these points p we
solve the rendering equation for p and ~ωo, which is the inverse of ~ωprim.

The Rendering Equation (Equation 1.1) is Fredholm integral equation
of the second kind and is not solvable analytically in the general case. In-
stead various Monte Carlo algorithms have been developed that compute a
solution by sampling (see [Kaj86, Laf96, Vea97, Jen96]). In-depth discus-
sion of Monte Carlo Global Illumination algorithms is beyond the scope of
this thesis. Still, this class of algorithms is relevant to the results described
here since all of the mentioned approaches rely heavily on ray tracing for
sampling. Improving the efficiency of ray tracing improves the performance
of the whole algorithm, which will hopefully become fast enough to allow
real-time global illumination simulations in complex scenes in the future.

1.2 Ray Tracing

We define the operation of tracing a ray as follows. Given a ray with an
origin o and direction ~d, and a scene consisting of geometric primitives (e.g.
triangles), we determine if there is a primitive in the scene that the ray
intersects, and optionally which is the primitive closest to the origin. With
other words we want to know if there is scalar value t, such that o+ t~d is a
point in space that belongs to a given primitive P in the scene.{

t | ∃P ∈ scene s.t. (o+ t~d) ∈ P
}
6= ∅ (1.2)

We may optionally look for

min
{
t | ∃P ∈ scene s.t. (o+ t~d) ∈ P

}
. (1.3)
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To be able to answer such queries, one only needs to be able to perform
an intersection test between a ray and a single geometric primitive. Given
a ray one can test every input primitive for intersection and determine if
there is one. Even though this can be done in linear time it is very ineffi-
cient even for very small scenes. This is why high performance ray tracing
implementations rely on acceleration structures.

1.3 Acceleration Structures

The way ray tracing is related to performing a search, acceleration structures
for ray tracing are related to general search structures like dictionaries. For
ray tracing one uses spatial structures that subdivide the space and store
the geometric primitives in their cells. A Binary Space Partition tree (BSP
tree) for example is the analog of a binary search tree. It partitions space
hierarchically via planes and stores the primitives in its leaves. Instead of
testing each ray against each primitive for intersection, one first traverses
the tree to find all leaves intersected by the ray and tests only the primi-
tives stored in those leaves. In this way some cheap traversal calculations
help eliminate large amount of intersection candidates - those that are not
contained in leaves intersected by the ray.

The use of various acceleration structure for ray tracing has been
thoroughly studied for a wide variety of applications. Early research fo-
cuses on the quality of the acceleration structure, regardless of its build
time [Hav01]. Such structures are to be used in static scenes and the
construction is made in a preprocessing step, making the build time ir-
relevant. Later on, various algorithms for fast construction and different
acceleration structures have been proposed. Some of them aim to reduce
the time for construction in order to allow ray tracing of dynamic scenes
[IWRP06, PGSS06, WBS06, WH06, WK06, WMS06]. All of the above al-
gorithms have been developed on and optimized for (multi-core-) CPUs. An
exception are the B-kd trees of Woop [WMS06], which are also implemented
in a hardware prototype specialized for ray tracing.

Recently GPUs, which have been previously specialized fixed function
hardware for raster-based rendering, started to develop in the direction of a
general purpose parallel processors. This, together with the introduction of
the CUDA programing model [NBGS08], made them an attractive platform
to implement ray tracing on [PGSS07, GPSS07]. Although GPUs are very
powerful processors, their hardware architecture imposes some limitations.
In order to exploit their potential the programs have to be massively parallel,
i.e. they must be able to distribute work between hundreds of thousands
of threads. For this reason a direct mapping of a CPU algorithm to the
GPU rarely provides any significant speedup. While the process of tracing
the individual rays is considered naturally parallel and maps well to GPUs
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[AL09], this was not the case with the algorithms for construction of the
spatial structures. This led to the development of parallel algorithms for
construction of acceleration structure such as kd-trees [ZHWG08] and BVHs
[LGS+09]. In this thesis we present parallel algorithms for fast construction
of uniform grids and a hierarchical variation of them. We show that these
structures and their construction map well to the hardware architecture and
the parallel model exposed trough CUDA.

1.4 CUDA

This work is about parallel algorithms for GPU ray tracing. To be able to
asses performance of the proposed methods we implement a full ray tracing
framework in CUDA [NVI09].

CUDA is a programing model that exposes the processing capabilities
of modern NVIDIA GPUs. In terms of programing language CUDA is an ex-
tension of C++, which offers the possibility to write normal C++ programs
(host code) and kernels (device code). The CUDA kernels are functions that
are executed on the graphics card. Because of hardware limitations not all
C++ features are supported in the code executed on the device. Those
include dynamic memory allocation and virtual function calls. Memory al-
location on the device is performed prior to kernel invocation trough the
CUDA API.

The kernel code is executed in multiple threads in parallel. Those
are grouped in thread blocks. Threads in the same block share fast on-chip
memory - the shared memory. It can be used as a cache or to communicate
between threads. To communicate between threads from different blocks
one has to use the much slower global memory.

We spare us a more detailed introduction to CUDA and point the
reader to the CUDA Programing Guide [NVI09] by NVIDIA and the paper
by Nickolls et al. [NBGS08] for further reading.



Chapter 2

Introduction

The main motivation behind this work is the development of a fast, ray trac-
ing based, rendering algorithm for dynamic scenes. Additionally we aim at
approaches that work well for global illumination computations based on ray
tracing. These often produce incoherent rays, i.e. rays that demand differ-
ent computations or access different data during traversal and are therefore
difficult to process efficiently on SIMD/SIMT architectures. While our grid
based ray tracing algorithms benefit from ray coherence, we are able to main-
tain reasonable SIMD utilization also in cases where between-ray coherence
is not present.

2.1 Overview

The remainder of this thesis is structured as follows. After a short introduc-
tion to uniform grids and their use as acceleration structures for ray tracing
we introduce our mapping of the ray traversal implementation to a GPU.
This is followed by the description of three fast and parallel grid construction
algorithms. First we show how we can reduce the problem of uniform grid
construction to sorting, which makes it massively parallel and maps very
well to modern GPUs. Then we extend the approach to make a builder that
can process multiple uniform grids in parallel and use the new algorithm to
construct two-level hierarchical grids. The third algorithm constructs the
two-level structure lazily. We try to separate out the set of visible primitives
which allows us to construct the structure only where needed. This last ap-
proach is our attempt of finding an algorithm that maps well to the parallel
GPU architecture and scales well for large and complex dynamic scenes.

2.2 Grids for Ray Tracing

In this thesis we consider two types of acceleration structures for ray tracing
- uniform grids and two-level grids (see Figure 2.1).

5
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Figure 2.1: Schematic Representation of two types of grids - uniform (left)
and two-level (right) for the same scene. Only empty and non-empty cells
are denoted. Each of the top level cells of the two-level grid is a uniform
grid itself.

Uniform Grids

The uniform grid structure is a regular spatial subdivision. The bounding
box of the grid is the same as the bounding box of the scene. The grid
is subdivided uniformly along each dimension (hence the name “uniform
grid”), but the number of cells in each dimension is arbitrary. We discuss
strategies of choosing optimal grid resolution for a given scene later on.

The Teapot in the Stadium

Grids have a disadvantage in terms of quality for ray tracing compared to
other adaptive hierarchical acceleration structures like kd-trees. The amount
of intersection candidates for an arbitrary ray that the structure is able to
eliminate depends on the primitive distribution in the scene. Being unable
to adapt to the local density of primitives, grids suffer from the so-called
“Teapot in the Stadium Problem”. It can happen that many or almost all
primitives fall into the same grid cell while most of the remaining cells are
empty. If a ray hits the cell in question one has to perform intersection tests
with all primitives inside it. In this case the structure fails to achieve its
purpose - to accelerate the traversal of the ray. To deal with this disadvan-
tage of uniform grids we investigate a slight variation of them - two-level
hierarchical grids.

Two-Level Grids

The two-level grid is an uniform grid with each cell being an uniform grid
itself (see Figure 2.1). The resolution of each top-level cell is independent,
allowing the structure to adapt to the local primitive density. While this
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adaptivity is limited, constructing an example where this limitation is ap-
parent is not easy. We will see later on that the two-level grid is not sensitive
to primitive distributions and similarly to the uniform grid is simple and fast
to traverse and construct.

The two-level grid sturcture is a special case of the family of hierar-
chical grids described by Jevans and Wyvill in [JW89], with the exception
that we fix the depth of the tree to two.
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Chapter 3

Ray Tracing with Grids

In this chapter we present our ray traversal algorithms. We implement
them in CUDA and test them on a CUDA capable GPU. The programing
language exposes a model in which the program (here the ray traversal) is
executed in multiple threads and each of them is more or less independent
from the others. However the underlying hardware has SIMD architecture
and we have to take this into account as well if we are to deliver an efficient
implementation. This is why we discuss notions like ray packets, coherence
and describe an optimization that helps us to improve the SIMD efficiency
of the implementation.

3.1 Packets and Ray Coherence

Tracing a ray in a scene(see Algorithm 1) is usually defined as the task
to find if there exists a primitive intersected by the ray and (optionally)
which is the primitive closest to the ray origin. To this end an acceleration
structure is traversed and the primitives that are stored in the leafs (or cells)
intersected by the ray are tested against the ray for intersection.

Implementing Algorithm 1 in CUDA and executing the program re-
sults in a straight forward parallelization, but it fails to exploit the parallel
hardware when the rays are not coherent. Incoherent rays are rays that
require different instructions or access different data during traversal. Ex-
amples for coherent rays are camera rays or shadow rays from a point light
source. They share the same origin and have similar directions, which means
that they are likely to visit the same parts of the scene and traverse common
nodes in the acceleration structure. Rays reflected from a curved surface or
diffuse inter-reflection rays are usually incoherent. In practice they almost
never have common origin and their directions vary a lot.

Incoherence in a set of rays becomes a problem when the rays are
traversed in packets. Usually rays are assigned to threads. These are grouped
into blocks, which consist of warps. The threads of each warp are executed in

9



10 CHAPTER 3. RAY TRACING WITH GRIDS

Algorithm 1 Tracing a ray

procedure trace(ray, acc, scene)
2: p← NULL . Closest primitive

d←∞ . Distance to p
4: if outside Scene(acc, ray) then

return (p, d)
6: end if

while Has More Leafs(acc, ray) do
8: cell← get Next Leaf(acc, ray)

for all q ∈ get Prims(cell) do
10: t← intersect(ray, q)

if t < d then
12: (p, d)← (q, t)

end if
14: end for

if d ≤exit Distance(cell) then
16: return (p, d)

end if
18: end while

return (p, d)
20: end procedure

SIMD making the warps the ray packets. Incoherence can cause performance
degradation when threads inside a warp disagree on which branch in the code
to take. Having a SIMD architecture means that the same instruction must
be executed for all threads in the warp. If branch divergence occurs inside
one warp, both code paths are executed sequentially for all threads. For each
path there are active and inactive threads. The results of the computations
for the inactive threads are thrown away.

3.2 Coherence in Uniform Grids

Uniform Grids are well suited for the GPU architecture since the traversal is
very simple and the procedure of advancing trough the cells does not produce
any control-flow divergence. We used the three-dimensional DDA traversal
algorithm by Amanatides and Woo [AW87]. Since at each traversal step
is loaded a cell which is neighbouring to the current one, the algorithm is
cache-friendly and we also expect the (already good) performance to increase
in the case of the introduction of hardware support for 3D textures for next
generation GPUs.

Hierarchical structures such as kd-trees and BVH usually introduce
larger traversal overhead than grids, but eliminate more intersection can-
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didates. This does not hurt performance as much when tracing coherent
rays in packets, since the operations for traversal can be amortized (i.e.
performed once for the entire packet). On the other hand packet based
algorithms are more sensitive to ray coherence. The grid traversal by Ama-
natides and Woo is very cheap and does not rely on ray coherence to achieve
good performance. Nevertheless a GPU implementation also benefits from
ray coherence. It is easy to show that following holds for a packet of rays
with origins in the same grid cell.

Statement:Let Ro be a set of rays, all of which have origin (not
necessarily the same) in a given grid cell o. If a cell c is intersected by any
ray r ∈ Ro and is the n-th cell along r counted from the origin, then c will
be n-th cell along any ray r2 ∈ Ro that intersects c.

Proof : Let o be the 0-th cell along the rays in the packet. For each cell c
holds that it is at distance (x, y, z) from o, where x, y and z are integers
and each denotes the distance (in number of cells) along the coordinate
axis with the same name. During traversal the rays advance with exactly
one neighbour cell at a time and the two cells share a side. This means
that c will be traversed at x+ y + z = n -th step of the traversal algorithm
for any ray with origin in o if at all �

For the GPU implementation of the 3D DDA grid traversal this means
that without having to do any additional computations, one can guarantee
that all rays in the (coherent) packet will arrive at the same time at a given
cell and because of the way memory operations are managed on the GPU,
the primitives contained in the cell will be loaded only once for the entire
packet.

3.3 Incoherence in Uniform Grids

As explained in Section 3.1, traversal of incoherent rays poses a challenge
on wide SIMD machines such as modern GPUs. Incoherence can occur even
in the case of primary rays when part of the rays in the packet (warp) are
terminated because they hit a primitive, but is almost always the case when
processing secondary rays (Figure 3.1). Mostly because of incoherence trac-
ing secondary rays can be several times more time-consuming than tracing
primary rays (see [AL09] and our results later on).

In cases where the ray coherency is low, tracing packets of rays can
become disadvantageous. An important observation is that having only
few active threads (rays), does not mean that the computations cannot be
parallelized. At the ray-triangle intersection stage of the algorithm (Line 9
in Algorithm 1) one has to test one or more rays with one or more primitives
each. In this part of the algorithm it can happen that performing intersection
test for one ray and many triangles offers better utilisation.
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Thread Activity

Thread 1: activeThread 1: active

Thread 2: activeThread 2: active

Thread 3: activeThread 3: active

Thread 6: idleThread 6: idle

Thread 7: idleThread 7: idle

Thread 4: activeThread 4: active

Thread 5: idleThread 5: idle

Thread 8: idleThread 8: idle

Thread Activity

Thread 1: activeThread 1: active

Thread 2: idleThread 2: idle

Thread 3: idleThread 3: idle

Thread 6: idleThread 6: idle

Thread 7: idleThread 7: idle

Thread 4: idleThread 4: idle

Thread 5: idleThread 5: idle

Thread 8: idleThread 8: idle

Figure 3.1: Control flow divergence caused by early ray termination (left)
and for secondary rays (right). Since one thread is mapped to exactly one
ray, hardware utilization is smaller after some of the rays are intersected
while others are not. In the example on the right only one thread is active
and will perform intersection tests sequentially, even though these can be
made in parallel.

3.3.1 Parallel Intersection for Single Ray

In the following we describe an intersection algorithm that can test multiple
triangles for intersection with one ray. In his PhD thesis [Wal04], Wald
describes such approach for 4-wide SIMD, but finds it inefficient due to the
overhead introduced by the need of data reordering. We use this approach
as a building block for the hybrid intersection algorithm in the next section.

Performing intersection tests for the same ray in parallel introduces
the need of communicating between threads. First of all the ray data must
be available to all threads that will be computing the intersection. In our
implementation we store the ray origins and directions in the shared memory
of the GPU. We preferred this to be the best solution, instead of using global
memory, which is also shared among threads but accesses have very high
latencies. The disadvantage of using so much shared memory per thread
is that it limits the occupancy. For our algorithm we could achieve 50%
occupancy which is similar to what others (e.g. [GPSS07]) report and should
be enough for hiding memory latencies. Because all ray data is in the shared
memory the only thing that is left to do is to broadcast the index of the ray
that has to be processed in a shared memory cell.

The second piece of information that has to be communicated between
threads is the intersection distance and the indices of the primitives that are
intersection candidates. We do not need to additionally store each candidate
(or its index) since they are stored in a consecutive order in each cell of the
accelerations structure. This allows us to store only the index of the first
intersection candidate and deduce the index of the others by the id of the
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Algorithm 2 Parallel Intersection for Single Ray

shRay[] . Ray Data
2: shDist[] . Distance to Intersection

procedure SRI(shRayId, shStartId)
4: threadId← inWarpId()

ray ← shRay[shRayId]
6: primId← shStartId+ threadId

q ← get Primitive(scene, primId)
8: shDist[threadId]←intersect(ray, q)

reduce(shDist, (q, d))
10: return (q, d)

end procedure

thread in the warp. To additionally simplify the implementation, we fix the
amount of intersection tests per ray. For simplicity we will use the warp size
(32) as this fixed number for the description. Our current implementations
makes 16 tests for 2 rays in parallel to keep all the 32 threads in the warp
busy. After the test the distances to the respective primitives are stored in
an array in shared memory and a single reduction is used to determine the
closest intersection (Line 9 in Algorithm 2).

3.3.2 Hybrid Intersection Algorithm

While the parallel intersection procedure (Algorithm 2) does not rely on ray
coherence it has several drawbacks compared to the packet intersectors. It
introduces significant overhead because of the between-thread communica-
tion and it can be applied only when a leaf of the acceleration structure
contains some fixed amount of primitives (16 in our implementation). It
makes no sense to use Algorithm 2 for leaves containing small amount of
primitives because the benefit will be smaller than the introduced overhead.

We implemented a combination of both algorithms. The new hybrid
approach uses packet intersection when all threads in the warp are active. In
the case where there would be inactive threads during intersection we check
if there are rays with large workload. In this case we gather all such rays
and perform intersection tests for each of them in parallel. There is a third
case: when not all threads are active and none of the active threads has large
workload. If this happens we are only able to use the packet intersection
test. To sum up our approach is to use packet intersection everywhere,
except for places where we are sure that single ray parallel intersection will
be faster.

To make a decision, which intersection algorithm to choose, amounts
to determining how many threads will be active and if there is a thread with
large workload. This can be easily done with warp vote functions which are



14 CHAPTER 3. RAY TRACING WITH GRIDS

Algorithm 3 Hybrid Ray - Primitive Intersection

shRay[] . Ray Data
2: procedure intersect(cell, (p, d), scene)

startId← first(cell)
4: endId←end(cell)

if any(endId− startId = 0) AND any (startId− endId ≥ 32)
then

6: . Single Ray Intersection
shRayId[] . Ray-Id-Buffer

8: shStartId[] . Prim-Id-Buffer
shDist[]

10: threadId← inWarpId()
if startId− endId ≥ 32 then

12: insert(threadId, shRayId[])
insert(startId, shStartId[])

14: end if
numRays← size(shRayId)

16: for i ∈ [0, numRays) do
rayId← shRayId[i]

18: pId← shStartId[i]
(q, t)← SRI(rayId, pId)

20: if threadId = shRayId[i] then
if t < d then

22: (p, d)← (q, t)
end if

24: end if
end for

26: else
. Packet Intersection

28: for all id ∈ [startId, endId) do
q ← get Primitive(scene, id)

30: t← intersect(ray, q)
if t < d then

32: (p, d)← (q, t)
end if

34: end for
end if

36: return (p, d)
end procedure
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available for CUDA devices with capability 1.2 or higher (Algorithm 3).
Additional hardware functionality can further reduce the overhead of

reorganizing the data. Note that we perform a prefix sum computation
inside a warp for the insertion in Line 12. This part of the computations
would be much faster if such instruction was supported in hardware. Also
the warp vote functions on Line 5 can be exchanged with a single population
count operation. Knowing how many of the threads have high workload will
allow us determine exactly when the single ray intersection will be more
efficient. Our test for the current implementation showed that this is the
case if less than 12 threads inside a warp have sufficient workload. Currently
we only compute if there is at least one thread with high workload and use
the single ray intersection in this case.

One should also note that all threads in the warp must be active
when calling the intersection routine. To this end one must use warp voting
functions to steer the control-flow in all loops and branches outer to the
intersection routine. We discuss further implementation details in the next
section.

Results

Model (# Tri) Primary Path Trace Path Trace Path Trace
SI, UG SI, UG HI, UG SI, TLG

erw6 (800) 18ms 137ms 185ms 136ms
Ruins (38K) 28ms 428ms 441ms 556ms
Ogre (50K) 40ms 431ms 393ms 400ms
Sponza (60K) 23ms 470ms 450ms 712ms
Conference (284K) 92ms 1100ms 904ms 861ms
Venice (1.2M) 107ms 1520ms 1088ms 1185ms

Table 3.1: Performance for primary rays and path tracing of a 1024×1024
image with one path per pixel. We compare path tracing with simple grids
using a simple (SI) and our hybrid (HI) ray-triangle intersector with an
uniform grid (UG) and the two-level grid (TLG), for which using differ-
ent intersection algorithms made almost no difference. We suspect this is
the case because there are only a few cells containing many primitives. All
timings are from a GTX285.

To have a benchmark with incoherent rays we implemented path trac-
ing [Kaj86]. We generate secondary ray directions using cosine distribution
and terminate the paths based on random decision (Russian Roulette) with
probability 1

2 . At the end of each path we shoot a shadow ray and sample
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Figure 3.2: Four examples of diffuse path tracing with 300 paths per pixel.
From left to right - Ruins, Ogre, Conference and Venice

direct illumination. The generated rays are highly incoherent after the first
bounce, because of path termination and because of the distribution for the
directions of the generated secondary rays. The performance measures (Ta-
ble 3.1) show performance boost due to the use of the hybrid intersector,
but the overhead introduced by the need for between-thread communica-
tion is still very large. We expect the algorithm to perform a lot better on a
hardware with support for population count and prefix sum on warp level.

3.4 Ray Traversal Implementation

To be able to test the performance of the algorithms described here, we
implemented a ray tracing framework in CUDA. We briefly describe some
important aspects of this implementation. Otherwise an interpretation of
our results and fair comparison to other approaches will be difficult to make.

3.4.1 Uniform Grid Traversal

Our ray tracing implementation does not make explicit use of packets, frusta,
or mailboxing like Wald’s [WIK+06]. We used the traversal algorithm pro-
posed by Amanatides and Woo [AW87] without any significant modifica-
tions, and store the grid cells in a 3D texture in order to make better use of
the texture cache during traversal. Since arithmetic operations are not that
expensive on the GPU especially when compared to memory operations, we
tried to reduce the register usage by not storing all data required for the
traversal. We recompute the cheapest terms each time we need them. In
our implementation we only reserve 6 registers - 3 for the cell index and 3
for the tMax variable, which tels us the value of the ray parameter t, for
which the ray intersects the next slice of cells in each dimension.

3.4.2 Two-level Grid Traversal

The traversal of the two-level grid is very similar to the one of the uniform
grid. We use the Amanatides and Woo [AW87] traversal both to step trough
the top level cells and to traverse the leaf level cells if there are any. We
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store the top-level cells in a 3D texture and all leaf level cells in a single 1D
texture.

3.4.3 Triangle Intersection

Our hybrid intersection algorithm described in Section 3.3.2 describes only
how a ray-triangle intersection can be mapped to a multi-threaded imple-
mentation. The actual algorithm that we used to determine whether or not
the ray hits the triangle is the algorithm by Möller and Trumbore [MT97].
Besides being very fast this approach does not rely on any precomputations
which is essential when rendering dynamic scenes.

We tried other methods like the algorithm by Shevtsov and et al.
[SSK07], but they depend on precomputed data for all triangles for each
frame. This reduces the overall performance and makes the algorithm less
scalable for large scenes where most of the triangles are not rendered and
the precomputations are wasted.

The Möller-Trumbore intersection algorithm worked best with our tri-
angle representation in which a triangle is stored as three indices to a global
vertex array. We also store the triangles and the vertex array in textures
since this not only reduced the memory footprint of the program but also
improved the rendering time.

3.4.4 Persistent Threads

The current hardware architecture of GPUs targets algorithms with homoge-
neous workloads in which threads require similar run times to execute their
tasks. This is not the case in ray tracing since depending on the part of the
scene being intersected by the ray the runtime for traversal may vary much.
It turns out that this can be a major performance bottleneck when rays
or tasks are assigned to threads statically because the execution of a single
thread may hold the hardware resources busy, while all other threads are
idle. Aila and Laine [AL09] propose a solution called “persistent threads”.
Instead of assigning rays to threads prior to the kernel invocation rays are
fetched by threads from a global queue. One needs to start enough threads
to saturate the hardware resources and these process all rays. Although Aila
and Laine used a BVH-based ray tracer in the paper we could observe the
same performance increases in our system.

3.4.5 Results

The focus of this thesis is the analysis of the trade offs between build time
and rendering performance provided by the acceleration structures. This is
why we prefer to present the performance of our rendering algorithms for
uniform and two-level girds together with the performance of the construc-
tion algorithms for the corresponding structures.
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Chapter 4

Uniform Grid Construction

There has been research for ray tracing with grids and grid construction
on CPUs, but we were not aware of how things look like on a graphics
card. While no one expects good acceleration for ray tracing from uniform
grids, they should be very fast to construct, especially on a highly parallel
architecture, that has the computational power and bandwidth of modern
GPUs. Unfortunately previous parallel construction algorithms either rely
on atomic synchronization to resolve write conflicts, or cannot guarantee
good work distribution. These problems do not influence performance as
much on a multi-core CPU system, but one needs very high parallelism in
order to exploit the resources of a graphics card. In the following we describe
our attempt to figure out a massively parallel grid construction algorithm
[KS09].

4.1 Previous Work

While fast grid construction algorithms for CPUs have been investigated
[IWRP06, LD08], to our knowledge, there are no attempts to efficiently
implement a construction algorithm for a highly parallel architecture such
as the GPU. Eisemann and Décoret [ED06] propose to use GPU rasterization
units for voxelization of polygonal scenes in a grid. Their approach is limited
to computing a boundary representation of the scene, which is only a part
of the information required for ray tracing. Patidar and Narayanan [PN08]
propose a fast construction algorithm for a grid-like acceleration structure,
but their algorithm is limited to fixed resolution and while it performs well
for scanned models, it relies on synchronization via atomic functions which
makes it sensitive to triangle distributions. Ize et al. [IWRP06] describe a
number of parallel construction algorithms for multiple CPUs. Their sort-
middle approach also does not rely on atomic synchronization, but the the
triangle distribution in the scene influences the work distribution and the
algorithm performance.

19
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Figure 4.1: The data structure consists of two parts. We have an array
of primitive references. Each primitive is pointed to as many times as the
number of cells this primitive overlaps. The grid cells are ranges in the cell
array. For example the upper left cell contains triangle 1 and 2, and its
range in the array contains references to these triangles.

The idea of reducing the construction process to sorting has been used
by Lauterbach et al. [LGS+09] for their LBVH structure. In the particle
simulation demo in the CUDA SDK [Gre08] sorting is used for construction
of an uniform grid over a set of particles. The approach described here, and
concurrently proposed by Ivson et al. [IDC09], is more general because it
handles geometric primitives overlapping any number of cells. This allows
for construction of grids that can be used as acceleration structures for ray
tracing geometric surfaces.

4.2 Data Structure

Like the compact grid representation by Lagae and Dutré in [LD08], we
store the structure in two parts (Figure 4.1). An indirection array contains
triangle references. The grid cells are stored separately. Each grid cell
stores the beginning and the end of a range inside the array such that the
triangles referenced in this interval are exactly those, contained in the cell.
In Lagae’s representation, a single index per cell is stored. This index is
both the beginning of the interval of the current cell, and the end of the
interval for the previous. We store independent cell intervals which doubles
the memory consumption but simplifies the parallel building process, by
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Algorithm 4 Data-Parallel Grid Construction. Kernel calls are suffixed by
<<< >>>.

b← compute bounds()
2: r ← compute resolution()
t← upload triangles()

4: g← 128,b← 256, ArefCounts ← array of g + 1 zeroes
ArefCounts ← count references<<<g,b>>>(t, b, r)

6: ArefCounts ← exclusive scan<<<1,g + 1>>>(ArefCounts)
n← ArefCounts[g] . Number of References

8: Apair ← allocate pairs array(n)
Apair ← write pairs<<<g,b>>>(t, b, r, i)

10: Apair ← sort(Apair)
cells← extract cell ranges<<< >>>(Apair, n)

allowing us to initialize all cells as empty prior to the build and then only
touch the non-empty cells.

4.3 Algorithm

Constructing a grid over a scene consisting of triangles (or any other type of
primitive), amounts to determining the bounding box of the scene, the reso-
lution of the grid in each dimension and, for each cell of the grid, which trian-
gles overlap it. Our construction algorithm (Algorithm 4) consists of several
steps. First we compute an unsorted array that contains all primitive-cell
pairs. This array is sorted and the grid data is extracted from it in a final
step. The same idea is used in the particle simulation demo in the CUDA
SDK [Gre08]. The only difference is that each of the primitives handled by
our algorithm can overlap arbitrary number of cells.

4.3.1 Initialization

Once the bounding box of the scene and the grid resolution is determined
on the host, we upload the primitives to the GPU. Since computing the
bounding box involves iteration over the scene primitives, we perform this
operation while reorganizing the data for upload.

4.3.2 Counting Primitive References

Because it is not possible to dynamically allocate memory on GPUs, we have
to know the size of the array that stores the primitive references in advance.
To compute it, we first run a kernel that loads the scene primitives in parallel
and for each determines the number of cells it overlaps (Line 5). Each thread
writes the counts into an individual shared memory cell and then a reduction
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is performed to count the total number of primitive-cell pairs computed by
each thread block. Next we perform an exclusive scan over the resulting
counts to determine the total number of primitive-cell pairs and allocate an
output array on the device. The scan additionally gives us the number of
pairs each block would output.

4.3.3 Writing Unsorted Pairs

Having the required memory for storage, we run a second kernel (Line 9).
Each thread loads a primitive, computes again how many cells it overlaps
and for each overlapped cell writes a pair consisting of the cell and primitive
indices. The output of the exclusive scan is used to determine a segmentation
of the array between the thread blocks. We have to avoid write conflicts
inside a block since each thread has to write a different amount of pairs. We
can use the shared memory to write the pair counts and perform a prefix
sum to determine output locations. In our implementation each thread
atomically increments a single per-block counter in shared memory to reserve
the right amount of space.

4.3.4 Sorting the Pairs

After being written, the primitive-cell pairs are sorted by the cell index via
radix sort. We used the radix sort implementation from the CUDA SDK
examples for this step of the algorithm. However there are faster radix
sort implementations, for example the one by Billeter et al. [BOA09] is
more than two times faster than the one we used. Using a faster radix sort
implementation will have a significant impact on the overall performance of
the algorithm.

4.3.5 Extracting the Grid Cells

From the sorted array of pairs it is trivial to compute the reference array
as well as the triangles referenced in each cell. We do this by invoking
a kernel that loads chunks of the sorted pairs array into shared memory.
We check in parallel (one thread per pair) if two neighboring pairs have
different cell indexes. This indicates cell range boundary. If such exists, the
corresponding thread updates the range indexes in both cells. Note that
in this stage of the algorithm only non-empty cells are written to. After
this operation is completed the kernel writes an array that stores only the
primitive references to global memory. In this part of the implementation
we read the data from shared memory and the writes to global memory are
coalesced, so the introduced overhead is very small. It is also possible to
directly use the sorted pairs to query primitives during rendering. However
getting rid of the cell indices frees space, and accesses to the compacted data
during rendering are more likely to get coalesced.
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Figure 4.2: Times for the different stages of the build algorithm in mil-
liseconds. We also include the time needed to bind the grid cells to a 3D
texture.

4.4 Triangle Insertion

In our algorithm we have to compute which cells are overlapped by each
input triangle twice. When counting the total number of references (Line 5)
we conservatively count the number of cells overlapped by the bounding
box of the triangle. Afterwards, when we want to write triangle-cell pairs
(Line 9), we do a more precise (but still efficient) test. We check if each
cell overlapped by the triangle bounding box is intersected by the plane in
which the triangle lies. An exact triangle-box overlap test [AM01] did not
pay off for any of the tested scenes.

We test our implementation only with scenes consisting of triangles,
but the same approach can be used for various geometric primitives. The
only requirement is that one can (efficiently) determine the cells of the grid
that each primitive overlaps.
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4.5 Analysis

Both the complexity of the algorithm and the performance of the implemen-
tation are dominated by the sorting of the primitive-cell pairs (Figure 4.2).
Under the assumption that the number of cells overlapped by each triangle
can be bounded by a constant, all parts of the algorithm have linear work
complexity. We chose to use radix sort because it is well suited for the data
we have, it also has linear work complexity, and there are fast and scalable
GPU implementations [SHZO07, BOA09]. Sorting on the device alleviates
the need for expensive data transfers. The only information we must com-
municate to the CPU during construction is the size of the references array
so that we can allocate it.

An important advantage of our algorithm is that there are no write
conflicts, and hence, no atomic synchronization is required throughout the
build. This implies that the performance of the construction algorithm
depends only on the number of primitive references that are inserted in
the grid, and not on the primitive distribution in the scene. In fact, as
discussed in Section 4.3.3, we use an atomic operation on shared memory
when we write output pairs. This however is neither necessary (can be done
efficiently via prefix sum), nor performance critical since we require a single
atomic operation per primitive and not per primitive insertion in a cell.

The memory requirements for the grid and its construction can be-
come a concern when dealing with very large models. Our method requires
additional (but temporary) memory for storing primitive-cell pairs instead
of only primitives. We additionally need a second array of pairs during sort-
ing. After the sort stage we extract the primitive references from the sorted
array and free the additional space. The main memory bottleneck is the
space for storing the grid cells. Each of them is 8 bytes large and we also
store empty cells. Despite the relatively large memory footprint, we were
able to construct grids for all models that we tested, including the Thai
Statue which has 10 million triangles. We discuss a memory issue that we
had with this model in the results section.

Even if there is not enough memory for the grid cells, one can modify
the algorithm to construct the acceleration structure incrementally. We
have not implemented this since the size of the grids and the added memory
transfers to the CPU and back will most likely result in build times of more
than a second.

4.6 Grid Resolution

An important part of the building process is the choice of the grid resolution.
This is the only factor one can vary in order to influence the quality of the
structure for ray tracing. Sparser grids cannot eliminate as many intersec-
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Scene Thai Statue Soda Hall Conference Dragon Sponza Ruins
Default 325× 547× 280 262× 274× 150 210× 133× 50 104× 147× 65 116× 55× 52 53× 69× 52
Cost-Based 313× 487× 281 256× 268× 164 164× 110× 50 137× 105× 71 115× 67× 63 60× 69× 59

Table 4.1: Grid resolutions computed via heuristic (Default) and cost-based
approach (Cost-Based). Instead of trying to make the grid cells as close to a
cube as possible, one can try to find a resolution that minimizes the expected
cost for tracing a random ray trough the grid.

tion candidates but a higher resolution results in bigger cost for traversal.
The resolution is typically chosen as:

Rx = dx
3

√
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V
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√
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V
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3

√
λN

V
(4.1)

where ~d is the size of the diagonal and V is the volume of the scene’s
bounding box. N is the number of primitives, and λ is a user-defined con-
stant called grid density [Dev88, JW89]. Like Wald et al. [WIK+06], we
set the density to 5 in our tests. A more extensive study on good choices
of grid density is done by Ize et al. [ISP07]. In the following we describe
another approach to choosing resolution of uniform grids.

MacDonald and Booth [MB90] introduced the Surface Area Metric for
measuring the expected cost of a spatial structure for ray tracing. Given
the cost for traversing a node of the structure Ct and the cost for testing a
primitive for intersection Ci, the expected cost for tracing a ray is

Ce = Ct

∑
n∈Nodes

Pr(n) + Ci

∑
l∈Leaves

Pr(l)Prim(l) (4.2)

Pr(n) and Pr(l) are the probabilities with which a random ray will
intersect the given node, Prim(l) is the number of primitive stored in the
leaf l. In the case of grids, since all cells are regarded as leaves and have
the same surface area (i.e. same intersection probability), Equation 4.2
simplifies to

Ce(G) = CtNc + Ci
SA(c)
SA(G)

Npr (4.3)

where SA(c) and SA(G) are the surface areas of a cell and the grid’s
bounding box, Npr is the number of primitive references that exist in the
grid, and Nc is the expected number of grid cells intersected by a random
ray. The surface areas of a cell and the grid can be computed in constant
time, and Nc can be bounded by the sum of the number of cells in each
dimension. The only non-trivial part for computing the expected cost is
counting the number of primitive references in the grid. Since we were able
to estimate this number relatively fast (Algorithm 4, Line 5), we tried to
find the best grid resolution for several test scenes. We empirically found
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Scene Tris References Resolution Time
Thai Statue 10M 19M 325× 547× 280 417
Thai Statue 10M 14.8M 192× 324× 168 280
Soda Hall 2.2M 6.7M 262× 274× 150 130
Conference 284K 1.1M 210× 133× 50 27
Dragon 180K 0.7M 104× 147× 65 16
Fairy Forest 174K 1.1M 150× 38× 150 24

Table 4.2: Build statistics for test scenes of different sizes. Times are in
milliseconds and are measured on a GTX280.

that Ct = 1.5 and Ci = 8.5 work well for our rendering algorithm and
used Equation 4.1 to have an initial estimate ~r. We exhaustively tested all
possible grid resolutions in the range

(
3
4~r;

5
4~r
)
.

While the resulting grids (Table 4.1) improved rendering performance
for our ray tracer, the differences were very small both for primary rays
and for path tracing of diffuse surfaces. For example the average number
of intersection tests per ray for Sponza and Ruins was reduced by up to 2
which is around 10%. Also the times for cost estimation allowed computing
the cost-based resolutions only in a preprocessing stage of the algorithm.
Unless noted, we used the default grid resolutions for all tests.

4.7 Results

We implemented our construction algorithm as a part of a GPU ray tracer in
the CUDA programming language (see Chapter 3). All tests were performed
on a machine with an NVIDIA Geforce 280 GTX with 1 GB memory and
a Core 2 Quad processor running at 2.66 GHz. The only computationally
demanding tasks for which we use the CPU are key frame interpolation for
dynamic scenes and data transfers.

4.7.1 Construction

From the results in Table 4.2 one sees that the performance of the con-
struction algorithm scales with the number of references in the grid. The
reported times are for the runtime of the construction algorithm and include
all overheads for memory allocation and deallocation, the computation of
the grid resolution, and a texture bind to a 3D texture, but do not include
the time for the initial upload of the scene to the GPU. When rendering
dynamic scenes, we use a separate CUDA stream for uploading geometry
for the next frame while rendering the current one. We were able to com-
pletely hide the data transfer by the computation for the previous frame for



4.7. RESULTS 27

Model LBVH H BVH Grid Model LBVH H BVH Grid
(Triangles) GTX280 GTX280 GTX280 (Triangles) GTX280 GTX280 GTX280

Fairy 10.3ms 124ms 24ms Conference 19ms 105ms 27ms
(174K) 1.8 fps 11.6 fps 3.5 fps (284K) 6.7 fps 22.9 fps 7.0 fps

Exploding Dragon 17ms 66ms 13ms Soda Hall 66ms 445ms 130ms
(252K) 7.3 fps 7.6 fps 7.7 fps (2.2M) 3.0 fps 20.7 fps 6.3 fps

Table 4.3: Build times and frame rate (excluding build time) for primary
rays and simple shading for a 1024 × 1024 image. We compare perfor-
mance of Günther’s packet algorithm [GPSS07] with LBVH and Hybrid
BVH (H BVH) as implemented by Lauterbach et al. [LGS+09] to our im-
plementation. See Table 4.2 for grid resolutions. The grid resolution of the
Bunny/Dragon varies with the scene bounding box.

Figure 4.3: Some of our test scenes, from left to right - Ruins, Sponza,
Conference, and Soda Hall. We can render these viewpoints at 25, 43, 11
and 8 fps with simple shading in a 1024 × 1024 window and can construct
grids in 10, 13, 27 and 130 milliseconds on a GTX280.

all tested animations. Note that we also update the bounding box of the
scene together with the data upload.

The time to build the full resolution grid for the Thai Statue (325 ×
547 × 280) does not include 198 milliseconds for copying the grid cells to
the CPU and then back to a GPU-texture. We were not able to perform
the texture bind directly, because this involves duplication of the grid cells
(nearly 400 MB), for which the GPU-memory was not sufficient. Note that
the copy and the texture bind are only necessary if the rendering must be
done on the device and the grid cells must be stored in a three dimensional
texture. We include the build time for the full resolution and the sparser grid
in Table 4.2 for comparison. This resolution allows us to achieve reasonable
rendering performance - between 3 and 5 frames per second. Ize et al.
[IWRP06] report build times of 136 and 21 milliseconds for the Thai Statue
(192× 324× 168) and the Conference on 8 Dual Core Opterons running at
2.4 GHz with bandwidth of 6.4 GB/s each.

4.7.2 Rendering

We compare build times and rendering performance to the results by Lauter-
bach et al. in [LGS+09] for their LBVH in Table 4.3. To remain fair we used
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a naive and non-optimized implementation for the renderer. We did not
include the persistent threads implementation (see Section 3.4.4) nor the
hybrid intersector (see Section 3.3.2).

The LBVH has an advantage in terms construction time, but the
rendering performance suggests that it does not offer better acceleration for
ray tracing than grids. The quality disadvantage is bigger for the relatively
large Soda Hall model.

The Hybrid BVH [LGS+09] offers fast construction times and between
three and four times better rendering performance than our implementation
of grids. Nevertheless the better construction time allows us to rebuild the
structure and trace a significant amount of rays before the overall perfor-
mance becomes worse.

Please note that the disadvantage in terms of rendering times that our
implementation has is partly due to the fact that the alternative approach
make explicit use of ray-packets. On the other hand, our approach is less
sensitive to ray coherency.

Despite their disadvantages grids can provide an alternative to hierar-
chical acceleration structures if the primitive distribution is to some extent
even, or in real-time applications in which the number of rays that have
to be traced is not very large. While high-quality SAH-based acceleration
structures enable faster ray tracing, their construction time is a performance
bottleneck in dynamic applications. The fast build times of grids are almost
negligible and shift the computational demand entirely toward tracing rays,
a task which is easier to parallelize.

4.8 Conclusion

We presented a robust and scalable parallel algorithm for constructing grids
over a scene of geometric primitives. Because we reduce the problem to
the sorting of primitive-cell pairs, the performance does not depend on the
triangle distribution in the scene. When used for ray tracing dynamic scenes,
the fast construction times allow us to shift the computational effort almost
entirely toward the rendering process. We also showed a method for choosing
the resolution of the grid in a way that minimizes the expected cost for
tracing a ray. Unfortunately this could not solve the problems that grids
have with triangle distributions.

In the next chapter we discuss an acceleration structure type which is
fast to build, but maintains high quality even for scenes with non-uniform
triangle distributions.



Chapter 5

Two-Level Grid Construction

In the previous chapter we saw that uniform grids cannot offer good ac-
celeration for ray tracing in scenes with non-uniform triangle distributions.
Two extreme examples in this respect are the fairy and the conference scene
in which the sensitivity to the “Teapot in the Stadium Problem” (see Sec-
tion 2.2) is obvious. Still using an SAH hierarchy like the Hybrid BVH
by Lauterbach et al. [LGS+09] will turn the construction time in the main
performance bottleneck.

In this chapter we describe a modification of the uniform grid that
handles non-uniform primitive distributions in a scene much better. The
two-level grid is a fixed depth hierarchy consisting of a relatively sparse top
level grid. Each of the cells of the grid is an uniform grid itself. Despite being
restricted to a depth of two, the structure handled well all practical examples
that we tried. More important we were able to reduce its construction
to sorting as well, which resulted in several times faster build times and
comparable rendering performance to the Hybrid BVH.

5.1 Data Structure

The representation of the two level grid (see Figure 5.1) is very similar to
the one of the uniform grid. We store references to the primitives in the
leaf cells in a single reference array. The second level cells (or leaf cells) are
ranges in this array. We store all second level cells in a single leaf array.
Each top level cell corresponds to a range in that array. We need to know
the resolution of the grid in this cell as well as the place in the array where
the leaf ranges are stored. We use two 32bit values for that. In the first
we store a the array index of the first leaf cell, in the second we compress
the cell resolution in 12 bits and leave out 4 bits for some flags that denote
status like “is empty” or “has children”. We use some of the flags during
traversal and others are relevant for the construction algorithm described in
the next chapter.
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Figure 5.1: The two level grid is represented by the top level cells (bottom
right), the leaf array (second line) and the primitive reference array(top).

5.2 Algorithm

We build the two-level grid top-down and like in the previous chapter we
reduce the problem to sorting cell-primitive pairs (Algorithm 5). We avoid
the need for any synchronization again and the work is easily distributed
to an arbitrary number of processing units. What makes this algorithm
interesting and very fast is that we are able to build the entire second level
with a single sort. We do this by assigning false cell indices to the data that
has to be sorted. In this way we directly construct the reference array for
the whole second level.

5.2.1 Building the Top Level

We construct the top level of the grid exactly as we would build an uniform
grid (see Chapter 4). The only difference is that we keep the sorted array
of pairs (Line 5). Having determined the first level of the grid we build the
second level. The basic idea behind the construction of the second level is
to use an algorithm for parallel construction of multiple uniform grids.
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Algorithm 5 Data-Parallel Two-Level Grid Construction. Kernel calls are
suffixed by <<< >>>. Scan and sort may consist of several kernel calls.

b← compute bounds()
2: r ← compute top level resolution()
t← upload triangles()

4: data← build uniform grid(t, b, r) . See Previous Chapter

AtopPairs ← get sorted top level pairs(data)
6: n← get number of top level references(data)
topCells← get top level cell ranges(data)

8: G← (ry, rz),b← rx
AcellCounts ← array of rx ∗ ry ∗ rz + 1 zeroes

10: AcellCounts ← count leaf cells <<<g,b>>>(b, r, topCells)
AcellCounts ← exclusive scan(AcellCounts, rx ∗ ry ∗ rz + 1)

12: . Set leaf cell pointers and cell resolution:

topCells← initialize <<<g,b>>> (AcellCounts, topCells)
14: g← 128,b← 256

ArefCounts ← array of g + 1 zeroes
16: ArefCounts ← count leaf refs<<<g,b>>>(t, b, r, n,AtopPairs, topCells)

ArefCounts ← exclusive scan(ArefCounts,g + 1)
18: m← ArefCounts[g]

Apair ← allocate leaf pairs array(m)
20: Apair ← write pairs<<<g,b>>>(t, b, r, n,AtopPairs, topCells, ArefCounts)

Apair ← sort(Apair)
22: leafCells← extract cell ranges<<< >>>(Apair,m)
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5.2.2 Counting Leaf Cells

The first thing we do is to determine and write how many leaf cells contains
each top level cell (Lines 8 to 10). We run a kernel with as many threads
as there are top level cells. Each thread computes the grid resolution inside
its cell and writes the number of cells in the output array. As in Section 4.6
the resolution of the cell is given by the size of its bounding box and the
number of overlapped primitives.

The scan performed in Line 11 gives a segmentation of the leaf array
between top level cells. This means that the n-th value is the position in
the leaf array where the first leaf of the n-th top level cell is located. Now
we have all information required for the top level cells - we know where to
find the sub-cells and we already computed the resolution of the cells. We
write this information in the cells in Line 13.

5.2.3 Counting Primitive References

Having initialized the data for the top level cells allows us to start writing
the array of pairs that will later be converted to the final array with primitive
references. We work on the array of pairs that we built while constructing
the top level grid. The primitives are loaded together with the indices of the
top level cell in which they need to be inserted. We lookup the resolution
of the top level cell and count the number of sub-cells overlapped by the
primitive as we did for the uniform grid (Section 4.3.2).

Using the same strategy as before we store the counts in shared mem-
ory and perform reduction when all primitives are processed. This and the
scan on Line 17 gives us the size of the pairs array together with a segmen-
tation for the next step of the algorithm.

5.2.4 Writing Unsorted Pairs

We allocate the memory required to store the cell-primitive pairs and start
populating it. The result of the last scan segments the output between
thread blocks and we resolve write conflicts within the same block with
atomic incrementation of a shared memory counter. So far the only differ-
ence to the corresponding part of the uniform grid construction is that we
use the top-level grid to load the primitives.

The other difference is in the information that we write in the output
array. We do not write the real cell index, since it is not unique. In Figure
5.1 there are 9 leaf cells with index 0, 2 with index 1 and so on. We want a
single sort to yield the final reference array. To this end we pair the location
of the cell in the leaf array with the primitive. This location is given by
the sum of the cell index and the start of the leaf array segment for the
corresponding top level cell. The last we can directly look up.
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5.2.5 Sorting the Pairs

As with the uniform grid the order of the primitive references in the sorted
array is the same as in the final reference array. We used the same radix
sort implementation but a faster one will have even greater impact on per-
formance compared to the uniform grid construction. Still since the sorting
stage is abstracted away both in the algorithm and its implementation it
will be easy to replace the sort implementation with an optimal one for a
given hardware architecture.

5.2.6 Extracting the Leaf Cells

We compute the leaf cells as we did this for the uniform grid. There we
used the cell indices to search for the starts and ends of a range for a given
cell. Having used pseudo-indices for pair generation is not a problem since
these indices give us the locations of the cells in memory and are unique.
So the cell ranges in the sorted array are exactly what we need. After we
output the leaf array we extract the reference array out of the pairs array
to compact the data and free space. This concludes the construction.

5.3 Analysis

Apart from being fast, the most important feature of the construction al-
gorithm is that its work complexity is linear. This is the main reason to
choose to use radix sort. The complexity is linear also due to the fact that
we can determine the cell resolution in constant time from the number of
overlapped primitives and the extent of the bounding box of the cell.

The runtime is dominated by the sorting again (see Figure 5.2). We
perform several additional steps compared to the uniform grid construction
to build the second level of the grid. Nevertheless the introduced overhead
is very small. As with the uniform grid construction we do not require any
synchronization inside the kernels. Atomic synchronization is not neces-
sary, but we use atomic increment on shared memory for convenience when
writing pairs in the unsorted array.

The algorithm is able to exploit the high parallelism of modern GPUs
because the work is evenly distributed among as many threads as the hard-
ware is able to manage. This is possible because in each step threads are
mapped to tasks independently. In addition to the high parallelism the run-
time is independent of the primitive distribution in the scene exactly like
the uniform grid construction.

In terms of memory footprint the two-level grids contain more primi-
tive references than the uniform grids but have less cells since they adapt to
the local density of primitives. The main memory bottleneck here is not the
space required to store the cells but the memory occupied by the references.
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Figure 5.2: Times for the different stages of the build algorithm in millisec-
onds. The complete runtime is the sum of the measured values. Because of
memory constraints the resolutions of the top level cells for the Thai Statue
were divided by 2 in each dimension. Fairy 0 and Exploding Dragon 6 means
that the first and seventh frame from the animations were measured. We do
not include the time to bind the top level cells to a texture since it was always
less than 1 ms and thus accounted for by the rounding of the other values.
Timings are from a GTX285.

Still the two-level grids are more memory friendly than the uniform grids.
Due to memory constraints we had to make the grid for the Thai Statue
sparser (see Figure 5.2).

5.3.1 Triangle Insertion

When constructing two-level grids a lot more primitive references are gen-
erated for the second level cells. To insert a triangle in a cell we use two
different tests. When counting the number of references we just compute
the number of cells overlapped by the bounding box of the triangle. When
writing the pairs we also test if the overlapped cell is intersected by the plane
in which the triangle lies. If this more precise test fails we write a dummy
pair and discard it in the sorting stage. This is identical in the uniform grid
construction (see Section 4.4).
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The number of dummy pairs varies much in the different test scenes. A
worst case example is the conference where nearly half of the pairs to sort are
dummies. Since this was not the case in most of the other test scenes we did
not consider using the exact triangle insertion both when counting and when
writing the pairs. Using sorting to discard triangle insertions makes the
algorithm simpler and more elegant. Additionally the existence of very fast
radix sort implementations makes it unclear whether or not different triangle
insertion strategies will pay off. Another approach to reducing the workload
for the sorting part of the algorithm is to use sparser grid resolution.

5.3.2 Grid Resolution

For our test we determined the grid resolution based on the heuristic 4.1
used for uniform grids. We divide the resolution by 6 in each dimension for
the top level since this seemed to yield the best rendering times for most of
the scenes we tried. Unless otherwise noted the resolution of each cell was
again determined by the formula and left unchanged.

Further analysis of the grid resolution may turn out to be important for
several reasons. First we are currently unable to use the hybrid intersector
since there are hardly any cells with enough primitives (16 in our current
implementation). We did not have enough time to make in-depth analysis of
different strategies for choosing the resolution of the top level grid and each
top level cell. The simple heuristic we used yielded very good results in most
cases. However our tests indicate that having sparser subdivision of the top
level cells also makes sense because it reduces both the construction time and
the memory footprint without necessarily hurting rendering performance.

5.4 Results

We extended GPU ray tracer with an implementation of the two-level grid
builder in CUDA. We tested performance on a machine with an NVIDIA
Geforce 285 GTX1 with 1 GB memory and a Core 2 Quad processor run-
ning at 2.66 GHz. As in the previous chapter, the only computationally
demanding tasks for which we use the CPU are key frame interpolation for
dynamic scenes and data transfers.

5.4.1 Construction

We give the performance of our implementation in Table 5.1. As with the
uniform grids we include all overheads except the initial upload of the scene
primitives to the GPU. The runtime is dominated by the sorting of the
primitive-cell pairs on the second level of the grid. The number of pairs

1In the previous Chapter we used a 280 GTX.
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Figure 5.3: The Fairy scene. Visualized are the amount of intersection
tests per ray that are required with the uniform grid (left) and the two-
level grid (right). The two-level grid adapts to the higher concentration of
primitives and is able to eliminate more intersection candidates.

Scene Tris References Cells (top) Cells (leaf) Time
Thai Statue 10M 22.7M 226K 6M 556
Soda Hall 2.2M 15.6M 48K 11.7M 312
Venice 1.2M 6.5M 27K 6.5M 129
Conference 284K 4.9M 6K 1.5M 89
Exploding Dragon 252K 1.3M 5K 1.3M 29
Fairy Forest 174K 1.2M 3K 889K 28

Table 5.1: Build statistics. Times are in milliseconds and are measured on
a GTX285. The top level cells for the Thai Statue are with halved resolutions
in each dimension. We used the seventh frame of the Exploding Dragon
animation and the first frame of the Fairy Forest animation.

(same as the number of primitive references) varies a lot in the different
scenes. In the Conference the number of references is 5 million, which is
very large compared to the uniform grid case where the references are 1
million. On the other hand the Fairy scene has almost the same amount (1.1
compared to 1.2 million) of references for both grids. With the exception of
the Conference and perhaps the Soda Hall the amount of primitive references
is reasonable compared to the uniform grid. The measured 6th frame from
the Exploding Dragon animation is worst case example for the performance
of the construction.

Note that the number of primitive references required for rendering is
smaller than the total number of references. This is the case because we use
the sorting stage to discard cell-triangle pairs that were generated using a
more conservative triangle insertion test.
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Model (Tris) LBVH H BVH Grid 2-lvl Grid
GTX280 GTX280 GTX280 GTX285

Fairy (174K) 10.3ms 124ms 24ms 28ms
1.8 fps 11.6 fps 3.5 fps 9.9 fps

Conference (284K) 19ms 105ms 27ms 89ms
6.7 fps 22.9 fps 7.0 fps 11.8 fps

Exploding Dragon 17ms 66ms 13ms 19ms
(252K) 7.3 fps 7.6 fps 7.7 fps 8.3 fps

Soda Hall (2.2M) 66ms 445ms 130ms 143ms
3.0 fps 20.7 fps 6.3 fps 12.6 fps

Table 5.2: Build times and frame rate (excluding build time) for primary
rays and simple shading for a 1024× 1024 image. We compare performance
of Günther’s packet algorithm [GPSS07] with LBVH and Hybrid BVH (H
BVH) as implemented by Lauterbach et al. [LGS+09] to our implementa-
tion. The grid for Soda Hall is not built with the default parameters like
in Figure 5.2. Here we halved the resolution of each top level cell in each
dimension.

Model (Tris) Ogre (50K) Ben (78K) Fairy (174K) Expl. Dragon (252K)
Grid 20.5 fps 18.5 fps 7.5 fps 6.8 fps

Two-Level Grid 31 fps 31 fps 15 fps 16 fps

Table 5.3: Frame rate (including build time) for primary rays and sim-
ple shading for a 1024 × 1024 image on a GTX285. This implementation
includes persistent threads but not the hybrid intersector since the later did
not influence performance. We halved the resolution of the each top level
cell of the two-level grid.

5.4.2 Rendering

We extend Table 4.3 from the previous section with the build and render
times for the two-level grid in Table 5.2. Here as well as before, we did not
include the persistent threads implementation (see Section 3.4.4) nor the
hybrid intersector (see Section 3.3.2). In this comparison both the construc-
tion and the rendering performance is sub-optimal. Construction times can
be reduced with about one third with a faster radix sort implementation
(Billeter et al. [BOA09]).

To give the reader an impression of how much the performance is in-
fluenced by optimizations such as persistent threads we give the frame rates
of our current implementation in Table 5.3. Note that these performance
figures will change as soon as we improve the sorting implementation and
find a better strategy to choose the resolution of the top level cells of the
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Figure 5.4: Some of our test scenes, from left to right - Ogre, Fairy Forest
and two frames from the Exploding Dragon animation. Using two-level grids
we achieve performance of 31, 15, and 16 fps with simple shading in a
1024× 1024 window on a GTX285. Frame rates include rebuild of the grid
and all overheads except the time to display the rendered frame-buffer.

grid. Additionally hardware support for population count and prefix sum on
warp level will allow us to use the hybrid ray-triangle intersector with very
little overhead. This will improve SIMD utilization and overall rendering
performance. Here, as well as in all other measurements, we did not make
any preprocessing of the scenes.

5.5 Conclusion

The acceleration structure discussed in this chapter is a simple extension of
the uniform grid that copes better with non-uniform triangle distributions.
Our goal was to both improve the quality of the acceleration structure and
maintain the fast build times. The results show that the rendering perfor-
mance increased and did not vary much when rendering parts of the scene
with more complex geometry. Unfortunately in some scenes the build times
of the two-level grids are significantly larger than those of uniform grids.
This is caused by the large number of triangle references that have to be
sorted when building the second level of the structure. The build times of
the two-level grid can turn into a performance bottleneck in some scenes but
this problem can be solved by incorporating a faster radix sort implementa-
tion (e.g. the one proposed by Billeter et al. [BOA09]).

We saw that two-level grids are suited for GPU ray tracing because
because of their fast construction and very competitive rendering perfor-
mance. They offer sufficient robustness toward primitive distribution and
hardware-friendly traversal and construction. However our interest in this
acceleration structure was also motivated by the fact that the two-level grid
is a spatial subdivision unlike BVHs and unlike kd-trees it is a very shallow
hierarchy. In the next chapter we exploit these properties in a scalable, lazy
construction algorithm.



Chapter 6

Lazy Two-Level Grid
Construction

Until now we discussed acceleration structures that can be built in linear
time form scratch. This strategy is very general and can handle arbitrary
motion regardless of its type. For example it does not matter if one wants to
render a moving character or an explosion - since the structure is built from
scratch for each frame the coherence or incoherence of the motion does not
influence the performance. However there is a downside as well - it is easy to
see that rebuilding the complete structure from scratch does not scale well
with the numbers of primitives in the scene. In this chapter we describe a
two-level grid construction algorithm that solves this problem by building
the structure lazily.

6.1 Sampling Lazy Construction

The idea of lazy construction in terms of ray tracing is to build the accel-
eration structure on the fly. It exploits the fact that not all of the input
primitives are relevant to the frame currently being rendered. So instead
of constructing an expensive acceleration structure over the complete scene
prior to rendering one builds the hierarchy while rendering. Only parts of the
acceleration structure that are visited by rays are actually computed. This
allows to avoid wasting build time for irrelevant parts of the scene. As re-
cent work suggests [HMF07] the complexity of a lazy construction algorithm
depends on the set of visible primitives instead of all primitives. Please note
that the term visible is slightly misleading since an object can contribute to
the image without being visible for example by casting shadow on a directly
visible object. In the following we will refer as visible to primitives or objects
that contribute to the final rendering.

While algorithmically (or theoretically) the lazy construction of hi-
erarchical acceleration structures has no downsides, in practice this is not

39
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Figure 6.1: Traditional lazy build algorithms traverse and construct simul-
taneously. This results in incoherent computations.

the case. Approaches for lazy construction have been hard to implement
efficiently on todays hardware. Simultaneous traversal and construction re-
sults in more complex code that is difficult to optimize and does not run
efficiently on SIMD architectures such as todays CPUs and GPUs (Figure
6.1). However the scalability offered by the lazy build strategies is a big
advantage, especially if one considers the tendency of the scenes used in
various rendering applications to constantly grow larger. In the following
we describe our attempt to map a lazy build algorithm for two-level grids
to GPUs using CUDA.

Trying to simultaneously traverse and construct the structure results
in complex and divergent code - a type of tasks that does not map well to
modern GPUs. However we observe that the separation of the set of visible
primitives from all primitives does not have to occur during traversal and
can be done in a preprocessing step. We base our construction algorithm
on this observation and introduce an additional step with the purpose to
separate relevant from irrelevant parts of the scene (Figure 6.2).



6.2. ALGORITHM 41

Ray tasks
Ray 1: traverseRay 1: traverse

Ray 2: traverseRay 2: traverse

Ray 3: traverseRay 3: traverse

Ray 4: traverseRay 4: traverse

Trace Pilot Rays Refine Hierarchy
Thread tasks

Thread 1: buildThread 1: build

Thread 2: buildThread 2: build

Thread 3: buildThread 3: build

Thread 6: buildThread 6: build

Thread 7: buildThread 7: build

Thread 4: buildThread 4: build

Thread 5: buildThread 5: build

Thread 8: buildThread 8: build

Ray tasks
Ray 1: traverseRay 1: traverse

Ray 2: traverseRay 2: traverse

Ray 3: traverseRay 3: traverse

Ray 6: traverseRay 6: traverse

Ray 7: traverseRay 7: traverse

Ray 4: traverseRay 4: traverse

Ray 5: traverseRay 5: traverse

Ray 8: traverseRay 8: traverse

Render

Figure 6.2: Our approach separates out relevant parts of the scene prior
to rendering. The algorithm breaks down to several simple parts that map
better to GPUs. We build the coarser top level and trace a small amount of
pilot rays (upper left). After we mark the visited top level cells and refine
them (upper right) we trace the remaining rays.

6.2 Algorithm

The construction algorithm (Algorithm 6) is essentially the same as the two-
level grid construction (Algorithm 5, Chapter 5). The difference is that we
build only part of the second level cells. To determine which of the first level
cells are to be refined we trace a set of pilot rays - a small subset of all rays
needed for rendering (Figure 6.2).

6.2.1 Building the Top Level

We assume that the top level of the grid is already present. In our test we
rebuild the top level grid from scratch every frame. A more efficient solution
is to update only parts where an object moved, but this information should
be provided by the application invoking the renderer. Due to the lack of
time we were not able to incorporate a scene graph in our application and
we could not reuse parts of the acceleration structure between frames.
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Algorithm 6 Lazy Two-Level Grid Construction. Kernel calls are suffixed
by <<< >>>. Scan and sort may consist of several kernel calls.

b← compute bounds()
2: r ← compute top level resolution()
t← upload triangles()

4: data← build uniform grid(t, b, r)
AtopPairs ← get sorted top level pairs(data)

6: n← get number of top level references(data)
topCells← get top level cell ranges(data)

8: Avisible ← trace pilot rays <<< >>> (data) . Mark visible cells

G← (ry, rz),b← rx
10: AcellCounts ← array of rx ∗ ry ∗ rz + 1 zeroes

AcellCounts ← count leaf cells <<<g,b>>>(b, r, topCells, Avisible)
12: AcellCounts ← exclusive scan(AcellCounts, rx ∗ ry ∗ rz + 1)

. Set leaf cell pointers and cell resolution:

14: topCells← initialize <<<g,b>>> (AcellCounts, topCells, Avisible)
g← 128,b← 256

16: ArefCounts ← array of g + 1 zeroes
ArefCounts ← count leaf refs<<<g,b>>>(t, b, r, n,AtopPairs, topCells)

18: ArefCounts ← exclusive scan(ArefCounts,g + 1)
m← ArefCounts[g]

20: Apair ← allocate leaf pairs array(m)
Apair ← write pairs<<<g,b>>>(t, b, r, n,AtopPairs, topCells, ArefCounts)

22: Apair ← sort(Apair)
leafCells← extract cell ranges<<< >>>(Apair,m)
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6.2.2 Tracing the Pilot Rays

The only difference to the standard two-level grid construction algorithm is
that we construct the second level cells only for a subset of the top level
cells. We determine which top level cells are visible by tracing pilot rays in
the uniform grid consisting of the top level cells. During traversal we mark
all top level cells that are visited by a pilot ray and need refinement. In the
remaining part of the construction we only consider top-level cells that are
marked as visible.

Tracing pilot rays in the coarse top level part of the structure is a
performance critical part of the algorithm. This is the case because the tem-
porary acceleration structure is very coarse and thus expensive to traverse.
We could afford to trace around 1% of the total rays whithout introducing
too much overhead in most scenes, but there were cases where tracing even
0.5% was too slow. We do not consider this to be a significant problem,
since the budget of pilot rays grew bigger with the size of the scene and the
performance was satisfactory with the larger Venice and Soda Hall scenes.

We generate the pilot rays by rendering uniformly distributed pixels
in the image plane. This makes the rays very incoherent. Since the top level
cells are large and contain many primitives we used the hybrid ray-triangle
intersection algorithm described in Section 3.3.2. This alone doubled the
amount of pilot rays we could trace for a given amount of time.

6.2.3 Building the Second Level

The remaining parts of the construction algorithm remain the same with
the exception of some small modifications that allow to discard non-visible
cells. The later are considered leaves or empty and not subdivided further.
This reduces the amount of input data for the reference counting and the
writing and sorting of pairs. The kernels we need to modify are the one that
counts the cells and the one that initializes the resolution of the top level
cells (Lines 11 and 14)1.

6.3 Analysis

The advantage of the lazy construction algorithm over the conventional one
is that the performance scales with the number of visible primitives instead
of the total number of primitives. It is also important that the algorithm
remains GPU friendly because we keep the computations coherent.

There are some downsides of the lazy construction as well. Some over-
head is introduced because of the need to trace pilot rays on the coarser level
of grid. In some cases this pays off by reducing the number of cells one has

1In our implementation we perform both the counting of cells and the initialization of
the resolutions in the same kernel to avoid computing the resolutions twice.
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Figure 6.3: Times for the different stages of the build algorithm in mil-
liseconds. The pilot rays traced are 1% of the primary rays. Timings are
from a GTX285.

to consider for refinement, but if the entire scene is visible, full construction
has to be performed anyway (see Figure 6.3). Another disadvantage is that
we search for visible parts of the scene by sampling with a small subset of all
rays. This means that it is possible to miss some of the visible top level cells.
In this case the algorithm is correct but the structure will have lesser quality
and the rendering performance will drop. We further discuss performance
in the results section.

6.4 Results

From the results reported in Figure 6.3 and Table 6.1 one sees that the lazy
construction does not make sense in scenarios where the amount of visible
primitives is close to the total number of primitives. This is the case in
the Conference, the Exploding Dragon and the Fairy Forest scene. There
almost all top level cells are reached by pilot rays and have to be refined. As
a result the lazy approach cannot reduce the workload for the sorting stage
and the tracing of pilot rays is not compensated for.

Since constructing an acceleration structure for the smaller scenes like
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Scene Tris Refs Refs Cells Leafs Leafs Time Time
(std) (lazy) (top) (std) (lazy) (std) (lazy)

Soda Hall 2.2M 15.6M 3.5M 48K 11.7M 0.9M 312 109
Venice 1.2M 6.5M 3.5M 27K 6.5M 2.1M 129 126
Conference 284K 4.9M 4.5M 6K 1.5M 1.3M 89 118
Exploding Dragon 252K 1.3M 1M 5K 1.3M 1M 29 37
Fairy Forest 174K 1.2M 1M 3K 889K 795K 28 110

Table 6.1: Build statistics. Times are in milliseconds and are measured
on a GTX285. “Refs” denotes the number of primitive references, “Cells”
are the top level cells, “Leafs” are the leaf cells. We used the seventh frame
of the Exploding Dragon animation and the first frame of the Fairy Forest
animation.

Scene View Refs Refs Build Build Render Render
(std) (lazy) (std) (lazy) (std) (lazy)

Soda Hall 1 15.6M 3.5M 312ms 109ms 24 fps 24 fps
Soda Hall 2 15.6M 2.7M 312ms 120ms 19 fps 18 fps
Soda Hall 3 15.6M 2.7M 312ms 114ms 18 fps 18 fps
Venice 1 6.5M 3.3M 129ms 127ms 15 fps 12 fps
Venice 2 6.5M 2.0M 129ms 80ms 18 fps 14 fps

Table 6.2: Lazy Build statistics. We compare build and render times for
several view-ports (1024 × 1024) of the Soda Hall and Venice scenes. See
Figure 6.4 for the views. We used 1% pilot rays for Soda Hall and 0.25%
pilot rays for Venice. Tests were made on a GTX285.

the Conference and the Fairy Forest is not a target for the lazy construction
algorithm we concentrate on the larger Soda Hall and Venice. Although
we could try to find setting for which the lazy construction works better
by changing the grid resolution or shooting less pilot rays, constructing
acceleration structure for such small scenes lazily makes little sense because
conventional algorithms already perform well there. We are interested in
the trade-off between build time and rendering performance in large scenes.

The measured results in Table 6.2 suggest that the lazy construction
pays off for various view-ports. This is due to the fact that in both test scenes
there is large amount of occluded geometry and most of the scene is not
contributing to the final image. It is interesting to see that the performance
does not deteriorate much even if the view-port covers a large portion of
the scene (first views for both Soda Hall and Venice in Table 6.2). This
shows that the algorithm can handle scenes in which the visible primitives
are relatively large part of the total primitives (e.g. 50% for the fist view of
the Venice scene).

In Figure 6.4 we analyze the quality of the acceleration structure. We
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Figure 6.4: The view points for Soda Hall (first three rows) and Venice
(fourth and fifth row). Left column - image with simple shading, middle col-
umn - amount of intersection tests with the lazy construction, right column
amount of intersection tests with the conventional construction.
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observe that even 1% of the rays are enough to “discover” the visible parts
of the scene and there is no big difference in the amount of intersection tests
that are required to render the image. This, together with the small dif-
ferences in rendering performance (Table 6.2), shows that the acceleration
structure and the lazy build algorithm can be used successfully in applica-
tions that render very large scenes.

6.5 Conclusion

In this chapter we showed how using sampling to steer the construction of
the two-level grid structure can be done efficiently and improves the time
for construction when rendering large scenes. We are able to efficiently dis-
cover most of the visible parts of the scene and concentrate the construction
process to them, instead of building the complete acceleration structure at
once.

The use of the lazy strategy also makes sense in a scenario in which
the structure is constructed incrementally. This can be done for both static
and dynamic scenes, but the later require an application with scene-graph
support which we do not have currently. However there is no evidence that
the lazy construction will fail in those cases.

We hope that as the size of the scenes grows the need and use of
lazy construction algorithm will become larger. They offer better scalability
than traditional construction algorithms, even if this is at the cost of some
overhead. Our results show that there are practical examples where the
scalability can compensate for this overhead.
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Chapter 7

Conclusion

In this work we investigated various approaches for ray tracing static and
dynamic scenes on GPUs. We focus on the use of not very popular acceler-
ation structures such as the uniform grid and show that their construction
and traversal map well to the parallel model exposed by CUDA.

Our contributions include a hybrid ray-triangle intersection algorithm
that improves SIMD efficiency during traversal of incoherent rays. We also
found out that a very efficient way to construct uniform grids on graphics
cards is to reduce the build process to sorting primitive-cell pairs.

Since the uniform grids did not offer good acceleration in scenes with
non-uniform triangle distributions we extended the data structure to the
two-level grids. They are a hierarchical extension that adapts much better
to the local primitive density in a scene. We propose a fast sort-based
construction algorithm for the new structure. The two-level grids can be
built almost as fast as the uniform grids and provide better ray traversal
acceleration.

We also propose a lazy construction algorithm for two-level grids that
maps well to GPUs. Our results show that using ray tracing for sampling
can be used to efficiently extract the visible part of the geometric primitives
in large scenes.

Altogether the proposed algorithms are interesting because they are
not direct mapping of existing approaches that are known to work good
on CPUs. The discussed algorithms are parallel and intended for the mas-
sively parallel architecture of modern GPUs. We could show that accelera-
tion structures and algorithms that are believed to perform bad on sequen-
tial hardware can exploit the GPU architecture and in many cases provide
performance better than state-of-the-art implementations of concurrent ap-
proaches.

49
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