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Abstract
We investigate the use of two-level nested grids as acceleration structure for ray tracing of dynamic scenes. We
propose a massively parallel, sort-based construction algorithm and show that the two-level grid is one of the
structures that is fastest to construct on modern graphics processors. The structure handles non-uniform prim-
itive distributions more robustly than the uniform grid and its traversal performance is comparable to those of
other high quality acceleration structures used for dynamic scenes. We propose a cost model to determine the
grid resolution and improve SIMD utilization during ray-triangle intersection by employing a hybrid packetiza-
tion strategy. The build times and ray traversal acceleration provide overall rendering performance superior to
previous approaches for real time rendering of animated scenes on GPUs.

1. Introduction

State of the art ray tracing implementations rely on high
quality acceleration structures to speed up the traversal of
rays. When rendering dynamic scenes, these structures have
to be updated or rebuilt every frame to account for changes
in the scene geometry. Hence the rendering performance de-
pends on the tradeoff between the ray traversal acceleration
and the time required for updating the structure.

While this problem has been well studied for CPUs as
summarized by Wald et al. [WMG∗07], only a few recent
approaches exist for ray tracing dynamic scenes on GPUs.
Zhou et al. [ZHWG08] and Lauterbach et al. [LGS∗09] pro-
pose fast construction algorithms for kd-trees and bounding
volume hierarchies (BVHs) based on the surface area heuris-
tic [MB90]. These methods allow for per-frame rebuild of
the structure and thus support arbitrary geometric changes,
but the time required to construct the tree is still a bottleneck
in terms of rendering performance. Further related work in-
cludes the BVH construction algorithm by Wald [Wal10].
Lauterbach et al. [LGS∗09] as well as Pantaleoni and Lue-
bke [PL10] propose very fast construction algorithms for
linear BVHs (LBVHs) based on placing the primitives in
the scene on a Morton Curve and sorting them. Kalojanov
and Slusallek [KS09] propose a similar idea for sort-based
construction of uniform grids. Alas, uniform grids do not
provide good acceleration of the ray traversal, mainly be-
cause they suffer from the “teapot in a stadium problem” –

the grids fail to eliminate intersection candidates in parts of
the scene with high density of geometric primitives.

We describe a modification of the uniform grid that han-
dles non-uniform primitive distributions more robustly. The
two-level grid is a fixed depth hierarchy with a relatively
sparse top-level grid. Each of the cells in the grid is itself
a uniform grid with arbitrary resolution. The structure is a
member of a class of hierarchical grids introduced by Jevans
and Wyvill [JW89], and to our knowledge its application to
ray tracing on GPUs has not been studied before.

We believe that the concepts in this paper are not re-
stricted to CUDA [NBGS08], but we implement the algo-
rithms in this programming language. We therefore use sev-
eral CUDA-specific notions. A kernel is a piece of code ex-
ecuted in parallel by multiple threads. A thread block is a
group of threads that runs on the same processing unit and
shares a fast, on-chip memory called shared memory. Atomic
operations (e.g. addition) on the same memory location are
performed sequentially.

2. Data Structure

A data representation of the acceleration structure that en-
ables fast query for primitives located in a given cell is essen-
tial for ray tracing. During traversal, we treat the two-level
grid as a collection of uniform grids. This is why the data
layout of the two-level grid (see Figure 1) is very similar
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Figure 1: The two-level grid is represented by the top-level
cells (bottom right), the leaf array (second line) and the
primitive reference array (top).

to how uniform grids are typically stored [LD08, WIK∗06,
KS09].

Each top-level cell provides the data needed to access its
sub-cells. Those are the resolution of the grid in this cell as
well as the location of its leaf cells. We store all leaf cells in
a single leaf array.

Each leaf cell has to provide the primitives that it overlaps
spatially. We store references to the primitives in a single ref-
erence array. This array has two important properties. First,
each primitive is referenced as many times as the number of
cells it overlaps. Second, references to primitives intersect-
ing the same leaf cell are stored next to each other in the
array. Hence for each leaf cell in the grid there is an interval
in the reference array, and the primitives referenced in this
interval are the ones that overlap the cell spatially.

In our implementation we use two 32-bit values for each
cell and each leaf. A leaf stores two integral values that indi-
cate where to find the references to the primitives in the leaf
(see Figure 1). For each top cell we store the location of the
first leaf cell (32 bits) together with the cell resolution com-
pressed in 24 bits. We leave out 8 bits for flags that denote
status like “is empty” or “has children”. Note that using only
24 bits limits the resolution of each top level cell to 2563,
but this limitation is implementation specific.

3. Sort-Based Construction

We build the two-level grid in a top-down manner. We con-
struct a uniform grid, which we use to initialize the top-level
cells. We then construct the reference array for the leaves in
parallel by writing pairs of keys and primitive references in a
random order and sorting them. Finally, we read out the leaf
cells from the sorted array of pairs.

Algorithm 1 Data-Parallel Two-Level Grid Construction.
Kernel calls are suffixed by < >. Scan and sort may con-
sist of several kernel calls.

b← COMPUTE BOUNDS()
2: r← COMPUTE TOP LEVEL RESOLUTION()

t← UPLOAD TRIANGLES()
4: data← BUILD UNIFORM GRID(t,b,r)

Atl p← GET SORTED TOP-LEVEL PAIRS(data)
6: n← GET NUMBER OF TOP-LEVEL REFERENCES(data)

tlc← GET TOP-LEVEL CELL RANGES(data)
8: . COMPUTE LEAF CELL LOCATIONS

G← (ry,rz),B← rx
10: Acc← ARRAY OF rx ∗ ry ∗ rz +1 ZEROES

Acc← COUNT LEAF CELLS <G,B>(b,r, tlc)
12: Acc← EXCLUSIVE SCAN(Acc,rx ∗ ry ∗ rz +1)

. SET LEAF CELL LOCATIONS AND CELL RESOLUTION

14: tlc← INITIALIZE <G,B> (Acc, tlc)
. COMPUTE REFERENCE ARRAY SIZE

16: G← 128,B← 256
Arc← ARRAY OF G+1 ZEROES

18: Arc← COUNT LEAF REFS<G,B>(t,b,r,n,Atl p, tlc)
Arc← EXCLUSIVE SCAN(Arc,G+1)

20: m← Arc[G]
Ap← ALLOCATE LEAF PAIRS ARRAY(m)

22: . FILL REFERENCE ARRAY

Ap← WRITE PAIRS<G,B>(t,b,r,n,Atl p, tlc,Arc)
24: Ap← SORT(Ap)

lea f s← EXTRACT CELL RANGES< >(Ap,m)

Kalojanov and Slusallek [KS09] reduce the construction
of uniform grids to sorting(Figure 2). There, the reference
array for the uniform grid is constructed by emitting and
sorting pairs of cell index and primitive reference. This algo-
rithm allows for optimal work distribution regardless of the
primitive distribution in the scene, but is restricted to con-
structing a single uniform grid in parallel.

For the leaf cells of the two-level grid we need to construct
multiple uniform grids of various resolution, each contain-
ing arbitrary number of primitives. Building each of the top-
level cells independently would make the entire construc-
tion too expensive. The main contribution of this paper is
an efficient algorithm for constructing the entire leaf level
of the two-level grid with a single sort. Our algorithm is a
generalization of the sort-based grid construction proposed
by Kalojanov and Slusallek [KS09] based on the following
observation: In order to use sorting to construct the entire ar-
ray of primitive references for the cells at each level of the
structure, we have to select a set of keys that form a one-one
correspondence with the cells. We take advantage of the fact
that we store the leaves in a single array, and choose to use
the memory location of the leaf as key.
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Figure 2: Sort-based construction of uniform grids. We use
this algorithm to compute the top-level of the two-level grid.
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Figure 3: Two-level grid construction. When we construct
the top-level, we use cell indices as keys. The second set of
pairs uses the memory location of the leaf cell as key. After
being sorted, the leaf pairs yield the reference array (not in
the figure) and the leaf cells.

3.1. Building the Top-Level Cells

To construct the top-level cells, we build a uniform grid us-
ing the sorting-based approach by Kalojanov and Slusallek
[KS09]. The algorithm amounts to determining all triangle-
cell overlaps and storing the information as an array of pairs.
As illustrated in Figure 2, this intermediate data is sorted us-
ing the cell indices as keys.

A notable modification of the original approach is that we
keep the sorted array of pairs (see line 5 of Algorithm 1) and
use it as input for the next stages of the construction instead
of the original set of input primitives.

The resolution of each top-level cell is computed in con-

stant time from its dimensions and the number of primitives
it contains as detailed in Section 5. The resolution also gives
the number of leaf cells each top-level cell contains.

We perform a prefix sum over the amount of leaf cells
for each top-level cell to compute the location of the first
leaf for every top-level cell (lines 9 to 11). After the scan is
performed in line 12, the n-th value of the resulting array is
the position in the leaf array where the first leaf of the n-th
top-level cell is located.

3.2. Writing Unsorted Pairs

Having initialized the data for the top-level cells allows us
to start writing the array of pairs that will later be sorted
and converted to the final array with primitive references.
Because it is not possible to dynamically allocate memory
on current GPUs we have to compute the size of the array
and allocate it in advance (Lines 16 to 19).

In contrast to the construction of the top-level grid, we
cannot use the leaf index relative to the top cell as a key
to identify primitive-leaf overlaps, as these leaf indices are
not unique. For example, in Figure 1 there are nine leaves
with index 0 and two with index 1. We want a single sort to
yield the final reference array. To this end we instead use the
location of the cell in the leaf array with the primitive index.
This location is easy to compute from the leaf index and the
location of the first leaf for the corresponding top-level cell,
which we already have.

We use a fast but conservative triangle-cell intersection
test when counting the output pairs and a more precise but
slower one when generating them. First we only consider the
bounding box of the triangle, and later we also make sure
that the plane in which the triangle lies intersects the cell.
The invalid intersections are still written with a dummy cell
index that is discarded in the sorting stage.

3.3. Sorting the Pairs

The order of the primitive references in the sorted array is
the same as in the final reference array. We use an improved
version of the radix sort by Billeter et al. [BOA09], which
uses a combination of two- and four-way splits. The size of
the largest key we need to sort is known, which tells us the
number of bits that need to be considered. We sort only on
the required bits, up to two bits at a time.

3.4. Extracting the Leaf Cells

In the final stage of the construction algorithm, we com-
pute the leaf cells directly from the sorted array of pairs.
We check in parallel for range borders, i.e. neighboring pairs
with different keys (e.g. the second and third sorted pairs in
Figure 3). To be able to access the primitives inside each
cell in constant time during rendering, we store the start and
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Figure 4: Times for the different stages of the build algo-
rithm in milliseconds. The complete runtime is the sum of the
measured values. Exploding Dragon 6 and Fairy 0 means
that the seventh and first frame from the animations were
measured. Times are measured on a GTX 285.

end of each range inside the corresponding leaf cell. This is
straight-forward to do, since we can read the location of the
cell from the key we used for sorting the pairs. After we out-
put the leaf array, we extract the reference array out of the
pairs array to compact the data and free space.

4. Analysis

Apart from being fast, the most important feature of the con-
struction algorithm is that its work complexity is linear. This
is one of the reasons to prefer radix sort, another one is
the availability of a fast GPU implementation by Billeter et
al. [BOA09]. Note that the data we have is well suited for
bucket sort algorithms like radix sort because the range of
different key values is small compared to the input size. The
complexity would not be linear if we were not able to deter-
mine the cell resolution in constant time, knowing the num-
ber of overlapped primitives and the extent of the bounding
box of each top-level cell.

4.1. Runtime

The runtime is more or less equally distributed between the
different stages of the construction (see Figure 4). The most
time-consuming stages of the algorithm – writing the pairs
and sorting them – are memory bandwidth limited. We do
not require any synchronization inside the kernels. Atomic
synchronization is not necessary, but we use atomic incre-
ment on shared memory for convenience when writing pairs
in the unsorted array.

The algorithm is able to exploit the high parallelism of
modern GPUs because the work is evenly distributed among
as many threads as the hardware is able to manage. Of course

this holds only if there are enough input primitives, which is
almost always the case. This is possible because in each step
threads are mapped to tasks independently. In addition to the
high parallelism, the runtime is independent of the primitive
distribution in the scene exactly like the sort-based uniform
grid construction [KS09].

4.2. Memory Footprint

In terms of memory footprint, the two-level grids consume
less memory mainly because of the reduced amount of cells
compared to a single-level uniform grid. The main memory
bottleneck here is the space required to store the references.
Because the two-level grids are more memory friendly than
uniform grids, we were able to construct the acceleration
structure for models such as the Thai Statue, which consists
of 10 million triangles, on a graphics card with 1GB of mem-
ory.

5. Grid Resolution

Our choice of grid resolution is based on the heuristic for
uniform grids introduced by Cleary et al. [CWVB83] and
also used by Wald et al. [WIK∗06]:

Rx = dx
3

√
λN
V

,Ry = dy
3

√
λN
V

,Rz = dz
3

√
λN
V

, (1)

where ~d is the extent of the box in all dimensions and V is
the volume of the scene’s bounding box. N is the number of
primitives, and λ is a user-defined constant called grid den-
sity. Thus the number of cells is a multiple of the input prim-
itives. Ize et al. [ISP07] investigate optimal grid densities
for uniform and two-level grids. The best densities for CPU
ray tracing suggested by the authors proved sub-optimal for
our GPU ray tracer. Ize et al. base their theoretical analysis
on several assumptions including fast atomic operations and
compute limited traversal, which did not hold for the hard-
ware we used. Additionally Popov et al. [PGDS09] demon-
strate that for other acceleration structures like BVHs treat-
ing the geometric primitives as points can severely limit the
quality.

To find optimal grid densities and work around the issues
mentioned above we employ the Surface Area Metric, in-
troduced by MacDonald and Booth [MB90], to compute the
expected cost (Ce) for traversing a random ray through the
acceleration structure:

Ce =Ct ∑
n∈Nodes

Pr(n)+Ci ∑
l∈Leaves

Pr(l)Prim(l), (2)

where Ct and Ci are constant costs for traversing a node of
the structure and intersecting a geometric primitive, Pr(·) is
the probability of a random line intersecting a node or leaf,
and Prim(·) is the number of geometric primitives in a leaf
node. In our case the nodes of the structure are the grid cells
and computing the cost for a particular grid density amounts
to constructing the top level of the grid and counting the
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Soda Venice Conf. Dragon Fairy Sponza

Ct = 1 1
2 2.4 2.1 1.4 1.9 1.4 2.1

Ct = 2 1.8 1.8 1.3 1.4 0.9 1.6
Ct = 3 1.2 1.2 1.3 1.0 0.9 1.3

Table 1: Optimal densities λ for the leaf level of the grid
computed according to the cost model based on the Surface
Area Metric. Cost for intersection was 1 for all listed traver-
sal costs (Ct ). The first level ot the grid had λ = 1

16

primitives referenced in the leaves, which is easily done af-
ter slight modification of the initial stage of our construction
algorithm – the kernel that counts the fragments in the leaf
level of the grid.

We set the top level density to λ = 1
16 to make better use

of our hybrid intersector, which is explained in detail later
in Section 7 and benefits from cells that contain at least 16
primitives. Then we tested our traverser and intersector per-
formance separately and together on an artificially created
grid with various number of primitives per cell. We took the
ratios of empty to full leaf cells from our test scenes. Our ray
tracing implementation performed best on relatively sparse
grids when we did 1 1

2 intersection tests per traversal step.
Thus we tried Ct = 1 1

2 ,2,3 and Ci = 1 looking for close to
optimal rendering performance and sparse grid resolutions
that would allow faster construction and the best time to im-
age for dynamic scenes. Given the costs for traversal and in-
tersections we tested all grid densities starting with 1

16 , and
adding 1

16 until we reached λ= 8. The densities with optimal
costs for some of our test scenes are listed in Table 1.

While the optimal density for the two-level grid is scene
dependent, the rendering performance for all scenes did not
vary noticeably for values of λ between 1

2 and 2. In the re-
mainder of the paper the density of each top-level cell is set
to λ = 1.2. Note that we use a global value for λ across all
top-level cells. Choosing the different density or even differ-
ent resolution for different top level cells can provide higher
quality grids, but would make the construction too slow as
already observed by Kalojanov and Slusallek [KS09]. Also
note that we used the Surface Area Cost Model to determine
a single grid density that works well with our traversal im-
plementation for all test scenes.

6. Ray Traversal

Similar to the uniform grids, the traversal of two-level grids
is very inexpensive. We modified the DDA traversal algo-
rithm by Amanatides and Woo [AW87]. We step through the
top level of the structure as we would do for a uniform grid.
We treat each top cell as a uniform grid itself and use the
same algorithm to advance through the leaf cells. One can
reuse some of the decision variables for the top-level traver-

sal to spare computations when initializing the decision vari-
ables for the leaf level.

The traversal algorithm has properties similar to the uni-
form grid traversal. It is SIMD (or SIMT) friendly since
there is no code divergence, except when the rays disagree
on which level of structure they need to traverse. The algo-
rithm favors coherent rays. In the case of uniform grids, one
can easily show that for rays starting in the same grid cell
will traverse every cell of the grid at exactly the same step of
the DDA traversal algorithm:

Statement:Let Ro be a set of rays, all of which have origin
(not necessarily the same) in a given grid cell o. If a cell c is
intersected by any ray r ∈ Ro and is the n-th cell along r
counted from the origin, then c will be n-th cell along any
ray r2 ∈ Ro that intersects c.

Proof: Let o be the 0-th cell along the rays in the set. For
each cell c holds that it is at distance (x,y,z) from o, where
x,y and z are integers and each denotes the distance (in
number of cells) along the coordinate axis with the same
name. During traversal, the rays advance with exactly one
neighbor cell at a time and the two cells share a side. This
means that c will be traversed at x+ y+ z = n-th step of the
traversal algorithm for any ray with origin in o if at all.

This means that a cell along the traversal path, if loaded,
will be loaded exactly once from memory. This property
transfers to the two-level grid structure when traversing the
top level and when rays agree on the first leaf cell when they
traverse the leaves.

7. Triangle Intersection

During the ray-triangle intersection stage of the ray traversal
the coherence in the computations executed by the different
threads is lost as soon as some of the rays traverse a full cell,
while others pass through an empty one. This is the case
because we parallelize by assigning different rays to each
thread, which ties SIMD efficiency to ray coherence. The
two-level grids we use for rendering are sparse compared to
other acceleration structures and contain more primitives per
leaf. We exploit this property and distribute work for a sin-
gle ray to many threads to speed up traversal by improving
SIMD utilization.

We employ a hybrid packetization strategy during ray-
triangle intersection. In each warp (SIMD unit consisting
of 32 threads), we check if all rays have intersection candi-
dates and if this is the case we proceed with the standard ray-
triangle intersection. If this is not the case, we check if there
are rays with high workload - at least 16 intersection candi-
dates. If these are more than 20 we proceed with the standard
intersection routine. This part of the algorithm maps better to
Fermi GPUs, because they support more Boolean operations
on warp level in hardware.
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Scene Tris Refs Top Leaf MB Time
Thai 10M 27.2M 226K 11.8M 194 257
Soda 2.2M 6.6M 48K 1.4M 52 67
Venice 1.2M 3.7M 27K 1.5M 26 32
Conference 284K 2.3M 6K 358K 10 17
Dragon 252K 905K 5K 307K 5 10
Fairy 174K 514K 3K 206K 4 8

Table 2: Build statistics with density of each top-level cell
λ = 1.2. Refs is the number of primitive references in the
final structure. Top and Leaf are amount of top-level and
leaf cells. MB is the amount of memory (in MB) required to
store all cells and the references. Times (in ms) are measured
on a GTX 285. We used the second frame of the Exploding
Dragon animation, and the sixth frame of the Fairy Forest
animation.

If we have determined that standard packetization would
be inefficient and there are rays with high workload, we in-
sert those into a buffer in shared memory. This is done with
an atomic increment on a shared counter. We only need to
store the index of the ray and the first intersection candidate,
because the indices of the remaining primitives are consec-
utive. We iterate on the entries of this buffer taking two at
a time and perform 32 intersection tests for a pair of rays
in parallel. We combine the results by performing reduction
on the arrays with the intersection distances, which are also
shared between threads. Finally, the thread responsible for
tracing the ray records the closest intersection (if there is
one) in thread local memory. When all rays with high work-
load have been processed we perform the remaining inter-
section tests one by one for all rays as usual.

We chose to define 16 intersection candidates as high
workload, since the actual SIMD width of 32 was too big
and in our structure there were not many cells with enough
primitives. Having to process more than 2 rays at a time on
the other hand turned out to introduce too much overhead.
To derive the last parameter – the number (20) of active rays
above which horizontal parallelization does not pay off – we
benchmarked the speed of our implementation with all pos-
sible numbers of active rays.

8. Results

We implemented the two-level grid builder together with a
GPU ray tracer in CUDA. We tested performance on a ma-
chine with an NVIDIA GeForce GTX 285, GTX 280, or a
GTX 470 and an Intel Core 2 Quad processor running at 2.66
GHz. The CPU performance is almost irrelevant for the re-
sults since we only use it to schedule work and transfer data
to the graphics card.

Model LBVH H BVH Grid 2lvl Grid
Fairy 10ms 124ms 24ms 8ms

(174K) 1.8 fps 11.6 fps 3.5 fps 9.2 fps
Conference 19ms 105ms 27ms 17ms

(284K) 6.7 fps 22.9 fps 7.0 fps 12.0 fps
Expl. Dragon 17ms 66ms 13ms 10ms

(252K) 7.3 fps 7.6 fps 7.7 fps 10.3 fps
Soda Hall 66ms 445ms 130ms 67ms

(2.2M) 3.0 fps 20.7 fps 6.3 fps 12.6 fps

Table 3: Build times and frame rates (excluding build time)
for primary rays and dot-normal shading for a 1024×1024
image. We compare our non-optimized implementation to the
results of Lauterbach et al. [LGS∗09] and Kalojanov and
Slusallek [KS09]. The Hybrid BVH (H BVH) [LGS∗09] is a
BVH with close to optimal expected cost for traversal. All
times are measured on a GTX 280.

8.1. Construction

We give the performance of our implementation in Table 2.
We include all overheads except the initial upload of the
scene primitives to the GPU. The runtime grows with the
number of pairs (i.e. number of primitive references), which
is scene dependent. The measured frames from the Explod-
ing Dragon and Fairy Forest animations are the worst case
examples for the build performance during the animations.

Note that the number of primitive references required for
rendering is smaller than the total number of references. This
is the case because we use the sorting stage to discard cell-
triangle pairs that were generated using a more conservative
triangle insertion test.

Pantaleoni and Luebke [PL10] improve on the LBVH
construction algorithm proposed by Lauterbach et al.
[LGS∗09] and achieve superior build performance and scal-
ability for their HLBVHs. To our knowledge the HLBVH
is the structure that is fastest to construct on modern GPUs.
The test results in Table 2 suggest that our algorithm also
scales very well with scene size. The build times for the two-
level grids depend on the chosen density and the primitive
distribution – we need around 10 ms per 1 million refer-
ences. For densities around 1, which proved to be optimal
for our renderer, construction times were close to and some-
times faster than those of Pantaleoni and Luebke.

8.2. Rendering

We tested the build and render times for the two-level grid
in Table 3. We clearly see that the new structure han-
dles a teapot in the stadium scene like the Fairy Forest
much better than uniform grids. Here we did not include
persistent threads - an optimization proposed by Aila and
Laine [AL09], that deals with a drawback of the GT200-
class NVIDIA GPUs related to work distribution. We did
this with the purpose to allow a fair comparison, at least to
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Ogre Fairy Conf. Venice
(50K) (174K) (284K) (2.2M)

GTX 285
Dot-Normal 31 fps 15 fps 22 fps 18 fps

Direct Illumination 7.8 fps 2.7 fps 3.0 fps 3.3 fps
Path Tracing 3.4 fps 2.1 fps 1.6 fps 1.4 fps

GTX 470 Hybrid
Dot-Normal 44 fps 22 fps 27 fps 26 fps

Direct Illumination 10 fps 4.6 fps 3.7 fps 4.7 fps
Path Tracing 4.7 fps 2.8 fps 2.4 fps 2.3 fps

GTX 470 Simple
Dot-Normal 46 fps 21 fps 26 fps 24 fps

Direct Illumination 10 fps 3.7 fps 3.3 fps 4.5 fps
Path Tracing 4.7 fps 2.6 fps 2.4 fps 2.1 fps

Table 4: Frame rate (in frames per second) for rendering a
1024×1024 image on a GTX 285, GTX 470 with our hybrid
intersector and without it. We measure the time required to
generate an image with dot-normal shading (1 primary ray
per pixel), diffuse shading and direct illumination from an
area light source (1 primary and 4 shadow rays), and path
tracing with 3 rays per pixel on average. This implementa-
tion includes persistent threads. The frame rates for the Ogre
and Fairy scenes include rebuild of the grid for each frame.

some extent, as neither Lauterbach et al. nor Kalojanov and
Slusallek used this optimization. In Table 4, we give frame
rates of the same implementation after we added persistent
threads.

Since primary rays are very coherent and maybe the
fastest to traverse, we also evaluated the traversal perfor-
mance of other types of rays as well. In Table 4 we test per-
formance on two dynamic and two static scenes. We com-
pare the performance for dot-normal shading with an imple-
mentation of diffuse direct illumination from an area light
source. For the latter, we trace 4 shadow rays starting at each
hit point and ending in a uniformly sampled random point
on the light source.

The last scenario we tested in Table 4 is path tracing
diffuse surfaces. We terminate the paths based on Russian
Roulette with probability 1

2 and shoot a single shadow ray at
the end of each path to compute the direct contribution from
the area light source previously used for the direct illumina-
tion test. We do not shoot other shadow rays except the one
at the end of the path and generate secondary ray directions
with cosine distribution around the surface normal. Note that
this benchmark produces very incoherent rays and the SIMD
units are under-utilized because of ray termination. For each
sample per pixel the average number of rays is 3, the longest
path has length 15, and the warps stay active for 6 bounces
on average for the test scenes.

On GT200 class GPUs, the hybrid ray-triangle intersec-
tion (Section 7) improved the overall performance for inco-
herent rays by up to 25%, but only if we did not use per-

sistent threads [AL09]. Thus we did not use it when testing
on the GTX285. Fermi GPUs (e.g. the GTX 470) have hard-
ware support for population count and prefix sum on warp
level which allows to implement the intersector more effi-
ciently. We used the hybrid intersector together with persis-
tent threads on the newer Fermi GPUs, which improved the
overall performance of our path tracer. The improvement in-
creased when rendering smaller resolution windows, which
reduces ray coherency, but the overall performance gain due
to the hybrid intersector did not exceed 10%. Although the
gain is not big, it is interesting to see that such hybrid par-
allelization scheme can work in practice. This indicates that
control flow divergence can limit the performance on wide
SIMD machines and adding some computational overhead
to reduce it can pay off on future hardware.

Overall, the traversal performance provided by two-level
grids is not as high as state-of-the-art approaches for static
scenes. We implemented the test setup described by Aila
and Laine [AL09]. We were able to trace 24 and 22 million
primary rays per second for the Conference and the Fairy
scene compared to 142 and 75 million as reported by Aila
and Laine. We used the viewports in Figure 5. In terms of
traversal performance, the two-level grids are comparable to
other acceleration structures that are fast to construct like the
LBVH or the Hybrid BVH, but our approach offers inferior
performance to algorithms optimized for static geometry.

9. Discussion and Future Work

There are various possible continuations of this work. Since
the main drawback of our approach is the ray traversal per-
formance, it will be interesting to investigate whether or not
different traversal algorithms can map better to the hardware
architecture and provide faster rendering times.

The sort-based construction algorithm can be extended to
build hierarchies with arbitrary depth. The tree has to be
constructed top-down and breadth-first. At each level d one
needs to identify a unique index of every node with depth
d + 1. The index can be paired with the indices of the over-
lapping primitives. After the pairs are sorted, the tree nodes
of depth d +1 can be read out from the sorted array. Hierar-
chical grids with depth larger than two might offer better ac-
celeration for ray tracing on future hardware. Extending our
traversal implementation to three-level grids did not make
sense, because of the increased amount of registers required
to run the code.

A variant of the algorithm can be used to construct mul-
tiple uniform grids over different objects in parallel. This
requires almost no modifications of the current implementa-
tion. The construction of the leaf level of the two-level grid
in fact performs this task, where the grids are actually cells
of the top level of the structure.

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.



J. Kalojanov, M. Billeter & P. Slusallek / Two-Level Grids for Ray Tracing on GPUs

Figure 5: Some of our test scenes, from left to right - Ogre, Fairy Forest, Exploding Dragon and Conference. The images were
rendered using path tracing, diffuse direct illumination, dot-normal shading and path tracing respectively.

10. Conclusion

The acceleration structure discussed in this paper is a sim-
ple extension of the uniform grid that copes better with non-
uniform triangle distributions. Our goal was to both improve
the quality of the acceleration structure and maintain the fast
build times. For our tests scenes, the rendering performance
increased overall, and especially when rendering parts of the
scene with more complex geometry. The build times of the
two-level grids are comparable and in general lower than
those of uniform grids when using resolutions optimal for
rendering in both cases. To our knowledge, there is no ac-
celeration structure that is significantly faster to construct on
modern GPUs. We believe that this and the reasonable ren-
dering performance makes the two-level grid a choice worth
considering for ray tracing dynamic scenes. We also hope
that the general ideas for the parallel construction and the
hybrid packetization can be adapted and used in different
scenarios, e.g. with different spatial index structures.
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